2024!又强又优秀的域泛化语义分割网络:Stronger, Fewer, & Superior-Rein

中国科技大学和上海人工智能实验室的研究团队提出Rein方法,有效利用预训练的视觉基础模型在领域泛化语义分割中展现出卓越性能。通过减少可训练参数和增强注意力机制,Rein在保持高性能的同时提高了模型的泛化性和训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章的标题是 "Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation",作者是来自中国科学技术大学和上海人工智能实验室的研究团队。文章的核心贡献在于提出了一种新的微调方法,名为“Rein”,用于在领域泛化语义分割(DGSS)任务中高效地利用视觉基础模型(VFMs)。

背景与动机: 领域泛化语义分割(DGSS)的目标是训练模型在多个不同的领域(例如,从合成图像到真实世界图像)上都能表现良好,而不需要访问目标领域的数据。这项任务对于实际应用(如自动驾驶)非常重要,因为模型需要能够处理各种不同的场景和条件。VFMs是一类在多种计算机视觉任务中表现出色的预训练模型,它们通过在大规模数据集上进行自监督或半监督预训练来学习强大的视觉表示。

论文链接:Search | arXiv e-print repository

 代码链接:GitHub - w1oves/Rein: [CVPR 2024] Official implement of <Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation>

主要贡献:

  1. 评估VFMs在DGSS中的表现:文章首先评估了多种VFMs在DGSS任务中的表现,包括CLIP、MAE、SAM、EVA02和DINOv2。通过与现有的DGSS方法进行比较,作者发现即使在不进行微调的情况下&#

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值