信息量和熵 - 总结

总结一下
离散变量:

离散变量
非平均自信息量平均自信息量 - 熵
自信息 I ( x k ) = l o g 1 q ( x k ) = − l o g q ( x k ) I(x_{k}) = log\frac{1}{q(x_{k})} = - log q(x_{k}) I(xk)=logq(xk)1=logq(xk) { X , q ( x ) } \{X, q(x)\} {X,q(x)} : H ( x ) = ∑ q ( x ) ∗ I ( x ) = − ∑ q ( x ) ∗ l o g q ( x ) H(x) = \sum q(x)*I(x) = - \sum q(x)*log q(x) H(x)=q(x)I(x)=q(x)logq(x)
条件自信息 I ( u 1 ∣ u 2 ) = − l o g p ( u 1 ∣ u 2 ) I(u_{1} \vert u_{2}) = - log p(u_{1}\vert u_{2}) I(u1u2)=logp(u1u2) { Y , ω ( y ) } \{Y, \omega(y)\} {Y,ω(y)} : H ( X ∣ Y ) = M H ( X ∣ y ) = ∑ ω ( y ) H ( X ∣ y ) = − ∑ x ∑ y p ( x y ) ∗ l o g p ( x ∣ y ) H(X\vert Y) = M H(X\vert y) = \sum \omega(y)H(X\vert y) = -\sum\limits_{x}\sum\limits_{y} p(xy)*logp(x\vert y) H(XY)=MH(Xy)=ω(y)H(Xy)=xyp(xy)logp(xy)
联合自信息 I ( x y ) = − l o g p ( x y ) I(xy) = - log p(xy) I(xy)=logp(xy) { X Y , p ( x y ) } \{XY, p(xy)\} {XY,p(xy)} : H ( X Y ) = M I ( x y ) = ∑ x ∑ y p ( x y ) ∗ I ( x y ) = − ∑ x ∑ y p ( x y ) ∗ l o g p ( x y ) H(XY) = MI(xy) = \sum\limits_{x}\sum\limits_{y} p(xy)*I(xy)= -\sum\limits_{x}\sum\limits_{y} p(xy)*logp(xy) H(XY)=MI(xy)=xyp(xy)I(xy)=xyp(xy)logp(xy)
非平均互信息平均互信息量
互信息 I ( x k ; y j ) = l o g p ( x i ∣ y j ) q ( x k ) I(x_{k}; y_{j}) = log\frac{p(x_{i}\vert y_{j})}{q(x_{k})} I(xk;yj)=logq(xk)p(xiyj) I ( X ; y ) = M x I ( x ; y ) = ∑ x p ( x ∣ y ) ∗ l o g p ( x ∣ y ) q ( x ) I(X;y) = M_{x}I(x;y) = \sum\limits_{x} p(x\vert y)*log\frac{p(x\vert y)}{q(x)} I(X;y)=MxI(x;y)=xp(xy)logq(x)p(xy) (一对多映射)
互信息 I ( X ; Y ) = M X Y I ( x ; y ) = ∑ x y p ( x y ) ∗ l o g p ( x ∣ y ) q ( x ) I(X;Y) = M_{XY}I(x;y) = \sum\limits_{xy} p(xy)*log\frac{p(x\vert y)}{q(x)} I(X;Y)=MXYI(x;y)=xyp(xy)logq(x)p(xy) (多对多映射)
注: 大写字母为集合,小写字母为某一特定事件。
性质非负性 、 对称性: I ( X ; Y ) ⩾ 0 I(X;Y) \geqslant 0 I(X;Y)0 I ( X ; Y ) = I ( Y ; X ) I(X;Y) = I(Y;X) I(X;Y)=I(Y;X)
平均互信息的性质非负性: I ( X ; Y ) ⩾ 0 I(X;Y) \geqslant 0 I(X;Y)0
对称性 / 互易性: I ( X ; Y ) = I ( Y ; X ) I(X;Y) = I(Y;X) I(X;Y)=I(Y;X) I ( X ; Y ∣ Z ) = I ( Y ; X ∣ Z ) I(X;Y\vert Z) = I(Y;X \vert Z) I(X;YZ)=I(Y;XZ)
极值性、凸函数性。
相互间关系 I ( X Y ; Z ) = I ( X ; Z ) + I ( Y ; Z ∣ X ) = I ( Y ; Z ) + I ( X ; Z ∣ Y ) I(XY;Z) = I(X;Z) + I(Y; Z\vert X) = I(Y;Z) + I(X; Z\vert Y) I(XYZ)=I(X;Z)+I(Y;ZX)=I(Y;Z)+I(X;ZY)
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) I(X;Y) = H(X) - H(X\vert Y) = H(Y) - H(Y\vert X) I(X;Y)=H(X)H(XY)=H(Y)H(YX)
I ( X ; Y ) ⩽ H ( X ) I(X;Y) \leqslant H(X) I(X;Y)H(X)
I ( X ; Y ) ⩽ H ( Y ) I(X;Y) \leqslant H(Y) I(X;Y)H(Y)
H ( X Y ) = H ( X ) + H ( Y ) H(XY) = H(X) + H(Y) H(XY)=H(X)+H(Y)
平均条件互信息量
条件互信息 I ( X ; Y ∣ Z ) = M x y z ∗ I ( x ; y ∣ z ) = ∑ x ∑ y ∑ z p ( x y z ) ∗ l o g p ( x ∣ y z ) p ( x ∣ z ) I(X; Y\vert Z) = M_{xyz}*I(x; y\vert z) = \sum\limits_{x} \sum\limits_{y} \sum\limits_{z} p(xyz)*log \frac{p(x\vert yz)}{p(x\vert z)} I(X;YZ)=MxyzI(x;yz)=xyzp(xyz)logp(xz)p(xyz)

概率密度:

xy的概率密度: P X Y ( x y ) = P X ( x ) ∗ P Y ∣ X ( y ∣ x ) P_{XY}(xy) = P_{X}(x)*P_{Y\vert X}(y\vert x) PXY(xy)=PX(x)PYX(yx)
x的概率密度 P X ( x ) = − ∫ − ∞ + ∞ P X Y ( x y ) d y P_{X}(x) =- \int_{-\infty}^{+\infty}P_{XY}(xy)dy PX(x)=+PXY(xy)dy
y的概率密度 P Y ( y ) = − ∫ − ∞ + ∞ P X Y ( x y ) d x P_{Y}(y) =- \int_{-\infty}^{+\infty}P_{XY}(xy)dx PY(y)=+PXY(xy)dx

连续随机变量:

互信息量平均互信息量
互信息 I ( x ; y ) = lim ⁡ Δ x → 0 , Δ y → 0 , l o g P X Y ( x y ) Δ x Δ y P X ( x ) Δ x P Y ( y ) Δ y = l o g P X Y ( x y ) P X ( x ) ∗ P Y ( y ) I(x; y) = \lim\limits_{\Delta x \rightarrow 0, \Delta y \rightarrow 0,}log\frac{P_{XY}(xy) \Delta x \Delta y}{P_{X}(x) \Delta x P_{Y}(y)\Delta y} = log\frac{P_{XY}(xy)}{P_{X}(x)*P_{Y}(y)} I(x;y)=Δx0,Δy0,limlogPX(x)ΔxPY(y)ΔyPXY(xy)ΔxΔy=logPX(x)PY(y)PXY(xy) I ( X ; Y ) = ∫ − ∞ + ∞ P X Y ( x y ) ∗ l o g P X Y ( x y ) P X ( x ) ∗ P Y ( y ) d x d y I(X;Y) = \int_{-\infty}^{+\infty}P_{XY}(xy)*log\frac{P_{XY}(xy)}{P_{X}(x)*P_{Y}(y)}dxdy I(X;Y)=+PXY(xy)logPX(x)PY(y)PXY(xy)dxdy
平均互信息I(X;Y)克服了互信息量 I ( x i ; y j ) I(x_{i};y_{j}) I(xi;yj)的随机性, 成为一个确定的量。因此,可以作为信道中流通信息量的整体测度。
条件互信息 I ( x ; y ∣ z ) = l o g P X Y ∣ Z ( x y ∣ z ) P X ∣ Z ( x ∣ z ) ∗ P Y ∣ Z ( y ∣ z ) = l o g P Y ∣ X Z ( y ∣ x z ) P Y ∣ Z ( y ∣ z ) = l o g P X ∣ Y Z ( x ∣ y z ) P X ∣ Z ( x ∣ z ) I(x; y\vert z) = log\frac{P_{XY \vert Z}(xy\vert z)}{P_{X\vert Z}(x \vert z)*P_{Y\vert Z}(y \vert z)} = log\frac{P_{Y \vert XZ}(y\vert xz)}{P_{Y\vert Z}(y \vert z)} = log\frac{P_{X \vert YZ}(x\vert yz)}{P_{X\vert Z}(x \vert z)} I(x;yz)=logPXZ(xz)PYZ(yz)PXYZ(xyz)=logPYZ(yz)PYXZ(yxz)=logPXZ(xz)PXYZ(xyz) I ( X ; Y ∣ Z ) = ∭ P X Y Z ( x y z ) ∗ l o g P X Y ∣ Z ( x y ∣ z ) P X ∣ Z ( x ∣ Z ) ∗ P Y ∣ Z ( y ∣ z ) d x d y d z I(X;Y\vert Z) = \iiint P_{XYZ}(xyz)*log\frac{P_{XY \vert Z}(xy \vert z)}{P_{X\vert Z}(x\vert Z)*P_{Y\vert Z}(y \vert z)}dxdydz I(X;YZ)=PXYZ(xyz)logPXZ(xZ)PYZ(yz)PXYZ(xyz)dxdydz
I ( X Y ; Z ) = ∭ P X Y Z ( x y z ) ∗ l o g P X Y Z ( x y z ) P X Y ( x y ) ∗ P Z ( z ) d x d y d z I(XY; Z) = \iiint P_{XYZ}(xyz)*log\frac{P_{XYZ}(xyz)}{P_{XY}(xy)*P_{Z}(z)}dxdydz I(XY;Z)=PXYZ(xyz)logPXY(xy)PZ(z)PXYZ(xyz)dxdydz
平均互信息的性质非负性: I ( X ; Y ) ⩾ 0 I(X;Y) \geqslant 0 I(X;Y)0
对称性 / 互易性: I ( X ; Y ) = I ( Y ; X ) I(X;Y) = I(Y;X) I(X;Y)=I(Y;X) I ( X ; Y ∣ Z ) = I ( Y ; X ∣ Z ) I(X;Y\vert Z) = I(Y;X \vert Z) I(X;YZ)=I(Y;XZ)
极值性、凸函数性。
相互间关系 I ( X Y ; Z ) = I ( X ; Z ) + I ( Y ; Z ∣ X ) = I ( Y ; Z ) + I ( X ; Z ∣ Y ) I(XY;Z) = I(X;Z) + I(Y; Z\vert X) = I(Y;Z) + I(X; Z\vert Y) I(XYZ)=I(X;Z)+I(Y;ZX)=I(Y;Z)+I(X;ZY)
互信息实际上是更广泛的相对熵的特殊情形。
相对熵 H c ( x ) = − ∫ − ∞ + ∞ P X ( x ) ∗ l o g P X ( x ) H_{c}(x) = -\int_{-\infty}^{+\infty} P_{X}(x)*logP_{X}(x) Hc(x)=+PX(x)logPX(x)
X ~ U(a,b) H c ( x ) = ∫ a b 1 b − a d x = l n ( b − a ) H_{c}(x) = \int_{a}^{b} \frac{1}{b-a}dx = ln(b-a) Hc(x)=abba1dx=ln(ba)
X~U(Ka, Kb) H c ( x ) = ∫ K a K b 1 K b − K a l n K ( b − a ) d x = l n K ( b − a ) H_{c}(x) = \int_{Ka}^{Kb} \frac{1}{Kb-Ka}lnK(b-a)dx = lnK(b-a) Hc(x)=KaKbKbKa1lnK(ba)dx=lnK(ba)
X~N(m, σ 2 ) \sigma^{2}) σ2) H c ( x ) = 1 2 l n 2 π e σ 2 H_{c}(x) = \frac{1}{2}ln2\pi e \sigma^{2} Hc(x)=21ln2πeσ2
联合事件XY的相对熵 H c ( X Y ) = − ∫ ∫ p ( x y ) ∗ l o g p ( x y ) d x d y H_{c}(XY) = -\int \int p(xy)*logp(xy)dxdy Hc(XY)=p(xy)logp(xy)dxdy
联合事件XY的条件熵 H c ( X ∣ Y ) = − ∫ ∫ p ( x y ) ∗ l o g p ( x ∣ y ) d x d y H_{c}(X\vert Y) = -\int \int p(xy)*logp(x\vert y)dxdy Hc(XY)=p(xy)logp(xy)dxdy
各种熵的关系 H c ( X Y ) = H c ( X ) + H c ( Y ∣ X ) = H c ( Y ) + H c ( X ∣ Y ) H_{c}(XY) = H_{c}(X) + H_{c}(Y\vert X) = H_{c}(Y) + H_{c}(X\vert Y) Hc(XY)=Hc(X)+Hc(YX)=Hc(Y)+Hc(XY)
平均互信息和各类熵的关系 I ( X ; Y ) = H c ( X ) − H c ( X ∣ Y ) = H c ( Y ) − H c ( Y ∣ X ) = H c ( X ) + H c ( Y ) − H c ( X Y ) I(X; Y) = H_{c}(X) - H_{c}(X\vert Y) = H_{c}(Y) - H_{c}(Y\vert X) = H_{c}(X) + H_{c}(Y) - H_{c}(XY) I(X;Y)=Hc(X)Hc(XY)=Hc(Y)Hc(YX)=Hc(X)+Hc(Y)Hc(XY)
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值