用Transformer端到端车道形状预测Lane Shape Prediction with Transformers

本文提出了一种使用Transformer端到端预测车道形状的方法,克服了传统特征提取和后处理的局限,能更好地捕捉车道的细长结构和全局信息。模型基于车道形状的先验模型,通过曲线重新参数化和匈牙利拟合损失进行训练,实验结果显示在车道检测任务上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

主流做法(特征提取和后处理)比较有用,但无法学习车道线的细长结构,学习过程有瑕疵。本文提出的端到段方法可以直接输出车道线的形状参数transformer可以学习全局信息和车道线独有的结构。

引言

提出了个数据集 Forward View Lane (FVL)。

相关工作

PolyLaneNet类似的思路,在这项工作中,我们的方法也期望参数输出,但不同之处在于这些参数来自车道形状模型,该模型对道路结构和相机姿势进行建模。 这些输出参数具有明确的物理意义,而不是简单的多项式系数。 此外,我们的网络是用 Transformer Block 构建的,该模块在对非局部交互进行建模时表现出注意力,使其能够加强对车道细长结构的捕获和全局上下文信息的学习。

方法

车道形状模型

车道形状的先验模型被定义为道路上的多项式。 通常,三次曲线用于近似平坦地面上的单车道线:

在这里插入图片描述

其中,k、m、n、b是实数参数,k!=0;(X, Z) 表示地平面上的点。 当光轴平行于地平面时,从道路投影到像平面上的曲线为:

在这里插入图片描述
其中,k’、m’、n’、b’是参数和相机内参、外参的组合,(u, v) 是图像平面上的像素。
对于光轴与地平面成 φ 角的倾斜相机,从倾斜图像平面到倾斜图像平面的变换曲线为:

在这里插入图片描述
这里 f 是以像素为单位的焦距,(u’, v’) 是相应的变换。 当 φ = 0 时,曲线函数方程为 3 将简化为等式 2。推导的细节可以在Sec.7中查看。

曲线重新参数化

通过将参数与俯仰角 φ 相结合,倾斜相机平面中的曲线具有以下形式:

在这里插入图片描述
这里,两个常数项 n’ 和 b’’’ 没有积分,因为它们包含不同的物理参数。

除此之外,还引入了垂直起点和终点偏移α,β来参数化每条车道线。这两个参数提供了描述车道线上下边界的基本定位信息。
在实际道路条件下,车道通常具有全局一致的形状。 因此,从左到右车道的近似弧具有相等的曲率,因此所有车道将共享 k ‘’, f’’, m’’, n’。 因此,第 t 条车道的输出被重新参数化为 gt:

在这里插入图片描述

其中 t ∈ {1, …, T},T 是图像中的车道数。 每条车道仅在偏置项和下/上边界方面有所不同。

Hungarian拟合损失

匈牙利拟合损失在预测参数和地面实况车道之间执行二分匹配,以找出正负。 匈牙利算法有效地解决了匹配问题。 然后匹配结果用于优化特定车道的回归损失。

二分匹配

我们的方法预测固定的 N 条曲线,其中 N 设置为大于典型数据集图像中的最大车道数。

在这里插入图片描述表示预测曲线。
其中,在这里插入图片描述(0:无线,1:有线)。
ground truth车道标记用序列在这里插入图片描述表示。
其中,r表示r 依次索引范围 R 内的样本点并且在这里插入图片描述
由于预测曲线的数量 N 大于 ground truth 车道的数量,我们将 ground truth车道也视为一组大小为 N 的填充有非车道

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值