古典概率,排列组合和贝叶斯定理(学习笔记)

这篇博客是作者在国外统计与数据分析本科学习过程中的个人笔记整理,重点介绍了古典概率、排列组合和贝叶斯定理。博主分享了样本空间、事件的概念,并通过骰子实验举例解释了集合论的基础概念,如交集、并集和补集。接着,博主详细阐述了排列和组合的计算方法。此外,还简要提到了概率的几个基本原理,包括条件概率和独立事件的概念,最后提及了贝叶斯定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次用CSDN写博客,其实主要目的是用来自己做统计学笔记归纳。

我现在是在外国就读统计与数据分析本科。其实本人以前在国内是个数学白痴,只是出国了突然就成了数学好..而且也是听朋友说读统计数据分析以后找工作不愁,所以就误打误撞近了这个系。是有点觉得被坑了,因为进去容易想毕业真的挺有难度。课程除了统计和数学那些,还有大量机器学习,那才是最要命,需要投入很多时间进去学习。 好了废话不多说了,开始整理自己的基础统计学笔记。

学校用的书是"Statistics for Business and Economics",从第三章"Elements of Chance: Probbabliltyy Methods"开始整理笔记。我觉得这一章对我这个菜鸟来说最难部分就是排列组合了。懂是看懂了,只是题目一有转变什么的,我的大脑就转不过来,感觉超痛苦的...不知道有没有人和我一样有这个烦恼?

 

3.1 集合论 (Random Experiment, Outcomes, and Events)

样本空间(SAMPLE SPACE)

每一个随机实验都有一个样本空间简写为S,样本空间的子集就是随机事件

Ex. 随机实验事件E抛出一颗6面的正常骰子,所以事件E的样本空间就是:

                                       S={1, 2, 3, 4, 5, 6}

1. 假设事件A抛出骰子是奇数,则对应事件A的集合是 {1, 3, 5},

complement of event A 是事件A的补集

以事件B表示 complement of event A,则对应事件B的集合是{2, 4, 6} 

2. 如果两个事件的交集是空集,则称mutually exclusive event

*一个事件的出现表示在同一时间内不会出现其他事件

例如上面的事件A和事件B

                   A∩B=∅

3. intersection of event就是两个事件的交集

例如事件A={1,3,5} 事件B={2,3,5},那么事件A和事件B的交集就是A∩B={3,5}

如果一个集合里面没有任何元素,那么我们称这个为空集,简写∅={ }

4. union of events是两事件的并集

例如事件A和事件B的并集{1,2,3,4,5,6}就是整体样本空间

                                          A∪B

5. 如果各个对应事件并集且等于样本空间,则称之为collectively echaustive events

*当进行一次试验时出现的结果一定是这些事件的其他之一

3.2 排列组合(Combination)

1. 置换(Permutaions)

例如从1到6的数字排列有720种

(从n个相异元素中取x个元素,得出x个元素排列数量)

 

2. 组合(Combinations)

例如从一个班中抽出四位同学组成四人小组的组合数为 (不放回):

又例如一个箱子里有6个不一样颜色的球,从里面抽取四个,每抽取一次后放回再抽第二次,

那么可以有多少组合(放回)

(从n个元素中抽取x个,x可重复)

 

 

3.3 概率理论(Probability and its postulates)

概率必须介于在0和1之间

样本空间所有概率的总和必须等于1

1. 古典概率(Classical Probability)

计算事件A的概率: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值