元学习(Meta learning)中的N-way K—shot问题

一. 元学习中的N-way K-shot问题
元学习(Meta learning)引入了一系列的概念,这其中包括N-way K-shot,Meta-training、Meta-testing、Base class和Novel class,Support set和Query set等,如图1。其中Base class是Meta Training阶段借助的源域数据;Novel class是Meta Testing阶段要学习的目标域数据,其中Base class和Novel class没有交集。具体可参见下面链接中Few-shot learning methods部分。https://annotation-efficient-learning.github.io/
在这里插入图片描述

图1:Two Stages of Meta Learning

N-way K-shot 问题中N和K通常是指meta testing阶段Novel class中Support set下样本类别数量和每一类的样本量。通常为了保持meta training阶段和meta testing阶段的一致性,meta training阶段中Base class的Support set也会相同的设置N和K。

小样本学习要解决的是Novel class样本量少的问题,由于深度学习是吃数据的,没有办法直接在Novel class小样本上进行训练,所以借助Base class的数据进行学习。由于Novel class的样本量少,即使在Base class上微调的很好,在Novel class上过拟合也会很严重,所以出现了构造episode的想法,统一训练和测试的标准:Novel class上不是(N-way K-shot)小样本嘛,在 Base class也构造成多个(N-way K-shot)小样本任务。

二:N和K对元学习结果的影响

这一内容在论文Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples 中进行了研究。如图2所示:

在这里插入图片描述

图2:N和K对小样本学习结果的影响

显然随着N的增加,会增加分类任务的难度,从而使预测的准确率下降;随着K的增加,对于度量学习来说,相当于减小了有偏,降低了期望风险,对于MAML和Reptile等优化二阶梯度问题而言,相当于降低了每个episodes的过拟合程度,都会提高预测的准确率。然而每种模型受K增加的影响情况不同,比如:Prototypical Networks和fo-Proto-MAML随着K的增加一开始表现很好,但很快就饱和了,当K值超过20后,Finetune baseline成了表现最优秀的。总结:当K值小时,使用元学习方法;K值增大,Finetune的结果更好。

在这里插入图片描述

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未来达摩大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值