思路:
电流密度矢量 J ⃗ \vec{J} J => 欧姆定律(微分/积分形式) => 焦耳定律(微分/积分形式) =>电流密度矢量 J ⃗ \vec{J} J 的无散性
=> 导电媒质内电场的无旋性 => 边界条件 => 静电比拟法 => 接地电阻
电流强度
定义: I = d q d t I=\frac{dq}{dt} I=dtdq
为标量
电流密度矢量
体电流密度矢量
-
宏观定义:
J ⃗ = d I d S n ⃗ \vec{J}=\frac{dI}{dS}\vec{n} J=dSdIn
-
微观定义:
J ⃗ = ρ v v ⃗ \vec{J}=\rho_{v} \vec{v} J=ρvv
其中 ρ v \rho_{v} ρv 为电荷体密度, v ⃗ \vec{v} v 为电荷运动速度 -
与 I I I 的关系:
I = ∫ s J ⃗ ⋅ d S ⃗ I=\int_{s} \vec{J} \cdot d \vec{S} I=∫sJ⋅dS
面电流密度矢量
-
宏观定义:
J s ⃗ = d I d l n ⃗ \vec{J_s}=\frac{dI}{dl}\vec{n} Js=dldIn
-
微观定义:
J s ⃗ = ρ v s v ⃗ \vec{J_s}=\rho_{vs} \vec{v} Js=ρvsv
其中 ρ v \rho_{v} ρv 为电荷体密度, v ⃗ \vec{v} v 为电荷运动速度 -
与 I I I 的关系:
I = ∫ l J ⃗ ⋅ a ⊥ ⃗ d l I=\int_{l} \vec{J} \cdot \vec{a_{\perp }} dl I=∫lJ⋅a⊥dl
没有线电流密度矢量,但是有线电流
线电流定义:
I = ρ v l v I=\rho_{vl} v I=ρvlv
- 面电流密度和体电流密度不相等,在欧姆定律中不能用面电流密度矢量代替体电流密度矢量;
- 面电流密度是一种抽象出来的理想情况
欧姆定律
微分形式:
J
⃗
=
σ
E
⃗
\vec{J}=\sigma \vec{E}
J=σE
其中
σ
\sigma
σ 为电导率,
1
σ
\frac{1}{\sigma}
σ1为电阻率
积分形式
U
=
I
R
U=IR
U=IR
焦耳定律
微分形式:
p
=
E
⃗
⋅
J
⃗
p=\vec{E} \cdot \vec{J}
p=E⋅J
其中
p
p
p 为焦耳功率体密度
在各向同性介质(
J
⃗
=
σ
E
⃗
\vec{J}=\sigma \vec{E}
J=σE)中,有
p
=
σ
E
2
p=\sigma E^{2}
p=σE2
待更新……