【电磁场】恒定电场

思路:

电流密度矢量 J ⃗ \vec{J} J => 欧姆定律(微分/积分形式) => 焦耳定律(微分/积分形式) =>电流密度矢量 J ⃗ \vec{J} J 的无散性

=> 导电媒质内电场的无旋性 => 边界条件 => 静电比拟法 => 接地电阻

电流强度

定义: I = d q d t I=\frac{dq}{dt} I=dtdq

为标量


电流密度矢量

体电流密度矢量
  • 宏观定义:

    J ⃗ = d I d S n ⃗ \vec{J}=\frac{dI}{dS}\vec{n} J =dSdIn

  • 微观定义:
    J ⃗ = ρ v v ⃗ \vec{J}=\rho_{v} \vec{v} J =ρvv
    其中 ρ v \rho_{v} ρv 为电荷体密度, v ⃗ \vec{v} v 为电荷运动速度

  • I I I 的关系:
    I = ∫ s J ⃗ ⋅ d S ⃗ I=\int_{s} \vec{J} \cdot d \vec{S} I=sJ dS

面电流密度矢量
  • 宏观定义:

    J s ⃗ = d I d l n ⃗ \vec{J_s}=\frac{dI}{dl}\vec{n} Js =dldIn

  • 微观定义:
    J s ⃗ = ρ v s v ⃗ \vec{J_s}=\rho_{vs} \vec{v} Js =ρvsv
    其中 ρ v \rho_{v} ρv 为电荷体密度, v ⃗ \vec{v} v 为电荷运动速度

  • I I I 的关系:
    I = ∫ l J ⃗ ⋅ a ⊥ ⃗ d l I=\int_{l} \vec{J} \cdot \vec{a_{\perp }} dl I=lJ a dl

  1. 没有线电流密度矢量,但是有线电流

    线电流定义:

I = ρ v l v I=\rho_{vl} v I=ρvlv

  1. 面电流密度和体电流密度不相等,在欧姆定律中不能用面电流密度矢量代替体电流密度矢量;
  2. 面电流密度是一种抽象出来的理想情况

欧姆定律

微分形式:
J ⃗ = σ E ⃗ \vec{J}=\sigma \vec{E} J =σE
其中 σ \sigma σ 为电导率, 1 σ \frac{1}{\sigma} σ1为电阻率

积分形式
U = I R U=IR U=IR


焦耳定律

微分形式:
p = E ⃗ ⋅ J ⃗ p=\vec{E} \cdot \vec{J} p=E J
其中 p p p 为焦耳功率体密度

在各向同性介质( J ⃗ = σ E ⃗ \vec{J}=\sigma \vec{E} J =σE )中,有
p = σ E 2 p=\sigma E^{2} p=σE2


待更新……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值