笔记 -- 电磁学基础1

2021-9-11 13:08:01
2021-9-13 08:29:45
  1、库仑定律
   1)定义:真空中静止的两点电荷之间的作用力与其乘积成正比,与其距离的平方成反比,作用力方向沿着其连线(电荷间相互作用力满足牛顿第三定律)
    F ⃗ 1 , 2 = k q 1 q 2 r 2 r ⃗ 1 , 2 , k = 1 4 π ϵ 0 , ϵ 0 = 8.854187818 × 1 0 − 12 C 2 / N ⋅ m 2 \vec{F}_{1,2}=k\frac{q_1q_2}{r^2}\vec{r}_{1,2},k=\frac{1}{4\pi\epsilon_0},\epsilon_0=8.854187818\times10^{-12}C^2/N·m^2 F 1,2=kr2q1q2r 1,2,k=4πϵ01,ϵ0=8.854187818×1012C2/Nm2
   2)库伦:将导线中恒定1A电流在1s内通过其单位横截面的电量
  2、电场
   1)场强定义:单位电荷在该处所受电场力大小,方向与电场力相同 E ⃗ = F ⃗ q \vec{E}=\frac{\vec{F}}{q} E =qF
   2)电场强度在空间中满足矢量叠加准则
   3)电力线密度:在电场中任意取垂直于该场强方向的面积微元 Δ S \Delta S ΔS,假设通过面积微元的电力线有 Δ N \Delta N ΔN,则其比值为电力线密度( Δ N Δ S \frac{\Delta N}{\Delta S} ΔSΔN),且正比于场强
   4)电通量:该点场强于面积微元在垂直场强方向的投影面积的积 ( Δ Φ E = E Δ S c o s ϕ , ϕ 为 Δ S 的 发 现 矢 量 n ⃗ 与 场 强 E ⃗ 之 间 的 夹 角 \Delta \Phi_E=E\Delta Scos\phi,\phi为\Delta S的发现矢量\vec{n}与场强\vec{E}之间的夹角 ΔΦE=EΔScosϕ,ϕΔSn E
    Φ E = ∬ S Δ Φ E d S \Phi_E=\iint{_{S}}\Delta\Phi_EdS ΦE=SΔΦEdS
   5)高斯定理:通过任意闭合曲面S的电通量等于该面所包围的所有电荷量的代数和 ∑ q \sum q q除以 ϵ 0 \epsilon_0 ϵ0且无关于闭合曲面外电荷( ∯ E c o s ϕ d S = ∑ i n S q i ϵ 0 = ∯ E ⃗ d S ⃗ \oiint Ecos\phi dS=\frac{\sum_{in S} q_i}{\epsilon_0}=\oiint\vec{E}d\vec{S} EcosϕdS=ϵ0inSqi= E dS
   6)环路定理: ∮ E ⃗ d l ⃗ = 0 \oint\vec{E}d{\vec{l}}=0 E dl =0
    ∙ \bullet d S ⃗ = n ⃗ d S d\vec{S}=\vec{n}dS dS =n dS d S ⃗ d\vec{S} dS 面元矢量 ⇒ d Φ E = E c o s θ d S = E ⃗ d S ⃗ \Rightarrow d\Phi_E=Ecos\theta dS=\vec{E}d\vec{S} dΦE=EcosθdS=E dS
   7)保守力场(位场):做功与路径无关(位能)
   8)电位: U P Q = W P Q q = ∫ P Q E ⃗ d l ⃗ U_{PQ}=\frac{W_{PQ}}{q}=\int_P^Q\vec{E}d\vec{l} UPQ=qWPQ=PQE dl
   9)静电能: W e = 1 2 ∬ ρ e U d V , ρ e 为 电 荷 体 密 度 W_e=\frac{1}{2}\iint{\rho_eUdV},\rho_e为电荷体密度 We=21ρeUdV,ρe
  3、电容
   1)电容:使导体每升高单位电位所需电量( C = q U C=\frac{q}{U} C=Uq
   2)同轴柱形电容器:由A、B两个同轴柱形导体构成,长度 L ≥ R B − R A L \ge R_B-R_A LRBRA
   场强: E = λ 2 π ϵ 0 r ⇒ U A B = ∫ A B E ⃗ d l ⃗ = λ 2 π ϵ 0 l n R B R A , 总 电 荷 : q = λ L ⇒ C = q U A B E=\frac{\lambda}{2\pi \epsilon_0r}\Rightarrow U_{AB}=\int_A^B{\vec{E}d\vec{l}}=\frac{\lambda}{2\pi \epsilon_0}ln\frac{R_B}{R_A},总电荷:q=\lambda L\Rightarrow C=\frac{q}{U_{AB}} E=2πϵ0rλUAB=ABE dl =2πϵ0λlnRARB,:q=λLC=UABq
   3)并联: C = C 1 + C 2 + . . . + C n C=C_1+C_2+...+C_n C=C1+C2+...+Cn
    串联: 1 C = 1 C 1 + 1 C 2 + . . . + 1 C n \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+...+\frac{1}{C_n} C1=C11+C21+...+Cn1
    4)电容储能: W e = ∫ 0 Q q C d q = Q 2 2 C ⇒ C U 2 2 W_e=\int_0^Q\frac{q}{C}dq=\frac{Q^2}{2C}\Rightarrow \frac{CU^2}{2} We=0QCqdq=2CQ22CU2
   4、电介质:不导电的绝缘介质(增加容值)
    极化强度: P ⃗ \vec{P} P ,极化电荷 − q ′ -q' q(极化面密度: σ e ′ \sigma'_e σe): ∯ P ⃗ d S ⃗ = − q ′ , P ⃗ = χ e ϵ 0 E ⃗ \oiint\vec{P}d\vec{S}=-q',\vec{P}=\chi_e\epsilon_0\vec{E} P dS =q,P =χeϵ0E
   5、电流
    1) d I = j d S c o s θ , 电 流 密 度 : j = Δ q Δ S Δ t Δ S dI=jdScos\theta,电流密度:j=\frac{\Delta q_{\Delta S}}{\Delta t_{\Delta S}} dI=jdScosθ,:j=ΔtΔSΔqΔS
    2)电流连续方程: ∯ S j ⃗ d S ⃗ = − d q d t \oiint_S\vec{j}d\vec{S}=-\frac{dq}{dt} Sj dS =dtdq
    3)稳恒电流: ∯ S j d S = 0 \oiint_S\boldsymbol jd\boldsymbol S=0 SjdS=0(流入S面的电量与流出的电量相等 ⇒ 电 路 必 须 闭 合 \Rightarrow 电路必须闭合
    4)电阻: R = ρ l S , ρ = 1 σ R=\rho\frac{l}{S},\rho=\frac{1}{\sigma} R=ρSl,ρ=σ1
    5)欧姆定律微分形式: j = σ E , Δ I = j Δ S , R = Δ l σ Δ S , Δ U = E Δ l \boldsymbol j=\sigma \boldsymbol E,\Delta I=j\Delta S,R=\frac{\Delta l}{\sigma \Delta S},\Delta U=E\Delta l j=σE,ΔI=jΔS,R=σΔSΔl,ΔU=EΔl
    6)焦耳定律微分形式: p = j 2 σ , p : p=\frac{j^2}{\sigma},p: p=σj2,p:热功率密度
    7)电动势:非静电力将单位正电荷从负极通过电源内部移动到正极所做的功( e = ∫ − + K d l , K = σ ( T ) d T d l \mathscr{e}=\int_-^+{\boldsymbol Kd\boldsymbol l},K=\sigma(T)\frac{dT}{dl} e=+Kdl,K=σ(T)dldT
   4、磁场
    1)安培定律: d F 2 = I 2 d I 2 × d B = I 2 d I 2 × μ 0 4 π ∮ L 1 I 1 d I 1 × r 12 ^ r 12 2 , B d\boldsymbol F_2=I_2d\boldsymbol I_2 \times d\boldsymbol B=I_2d\boldsymbol I_2\times \frac{\mu_0}{4\pi}\oint_{L_1}\frac{I_1d\boldsymbol I_1\times\hat{\boldsymbol r_{12}}}{r_{12}^2},\boldsymbol B dF2=I2dI2×dB=I2dI2×4πμ0L1r122I1dI1×r12^,B为磁感应强度
    2)毕奥-萨伐尔定律:载流导体周围产生的磁场(通电直导线: d B = μ 0 4 π I d I × r ^ r 2 , r ^ d\boldsymbol B= \frac{\mu_0}{4\pi}\frac{Id\boldsymbol I\times\hat{\boldsymbol r}}{r^2},\hat\boldsymbol {r} dB=4πμ0r2IdI×r^,r^为元电流至空间点的距离, r r r为至导线垂直距离;
    通电螺线管: d B = μ 0 × 2 π R 2 I 4 π [ R 2 + ( x − l ) 2 ] 3 2 n d l , d\boldsymbol B=\frac{\mu_0\times 2\pi R^2I}{4\pi [R^2+(x-l)^2]^{\frac{3}{2}}}ndl, dB=4π[R2+(xl)2]23μ0×2πR2Indl,长度 d l dl dl内共有 n d l ndl ndl匝)
    3)高斯定理: Φ B = ∬ B c o s θ d S = ∬ B d S = 0 \Phi_B=\iint Bcos\theta dS=\iint \boldsymbol Bd\boldsymbol S=0 ΦB=BcosθdS=BdS=0
    4)安培环路定理:磁感应强度沿任意闭合环路 L L L的线积分与穿过该环路所有电流强度的代数和的 μ 0 \mu_0 μ0
     ∮ B d I = μ o ∑ i n L I \oint \boldsymbol Bd\boldsymbol I=\mu_o\sum_{in L}I BdI=μoinLI
   5、电与磁
    1)电磁感应定律:导体回路中的感应电动势与穿过回路的磁通量的变化率成正比( e ∝ − d Φ d t e\propto -\frac{d\Phi}{dt} edtdΦ
    2)楞次定律:闭合回路中感应电流的方向总是使其所激发的磁场阻止引起感应电流磁通量的变化
    3)涡流:电路中的大块金属在通电过程中产生的感应电流(金属块电阻较小,涡流强度较大 → \to 变压器中的铁芯产生涡流损耗)
     ∙ \bullet 变压器在制作过程中为降低涡流损耗,通常选用阻值较大的硅钢,并将其制成片状叠加且相互之间绝缘的形式,以减小涡流
    4)趋肤效应:交流电路中,随着电路频率的增加,导线中的电流分布逐渐向表面集中(导线有效面积减少,等效电阻增加 → \to 高频时,使用瓣线降低影响(相互绝缘的细导线编制,且高频时导线表面应镀银以降低其电阻))
     ∙ \bullet 本质为衰减电磁波向导体内传播引起
     ⋄ \diamond 趋肤深度: d s = 2 ω μ μ 0 σ = 503 f μ σ , σ d_s=\sqrt{\frac{2}{\omega \mu\mu_0\sigma}}=\frac{503}{\sqrt{f\mu \sigma}},\sigma ds=ωμμ0σ2 =fμσ 503,σ电导率, μ \mu μ磁导率
     ⋄ \diamond j = j 0 e − d d s , j j=j_0e^{\frac{-d}{d_s}},j j=j0edsd,j电流密度(表示电流密度 j j j下降到 j 0 j_0 j0 1 e \frac{1}{e} e1时的深度)
     ∙ \bullet 由于变压器中的铁芯 μ \mu μ很大,导致其存在明显的趋肤效应,从而涡流损耗需要考虑趋肤效应的影响
    5)互感&自感
    (1)互感:相邻线圈在彼此线圈中产生的感应电动势 Ψ 12 = M 12 I 1 , M 12 \Psi_{12}=M_{12}I_1,M_{12} Ψ12=M12I1,M12为比例(互感)系数 ⇒ e 2 = − d Ψ 12 d t \Rightarrow e_2=-\frac{d\Psi_{12}}{dt} e2=dtdΨ12
    (2)自感:线圈中电流变化在线圈自身引起的感应现象( Ψ = k I , k \Psi=kI,k Ψ=kI,k仅相关于线圈特征及匝数)
    ∙ \bullet LR电路时间常数: τ = L R \tau=\frac{L}{R} τ=RL
    ∙ \bullet RC电路时间常数: τ = R C \tau=RC τ=RC
    ∙ \bullet LCR电路阻尼度: λ = R 2 C L \lambda=\frac{R}{2}\sqrt{\frac{C}{L}} λ=2RLC
     ▹ λ > 1 \triangleright \lambda>1 λ>1:过阻尼
     ▹ λ = 1 \triangleright \lambda=1 λ=1:临界阻尼
     ▹ λ < 1 \triangleright \lambda<1 λ<1:阻尼振荡
     ∙ \bullet 当电路 R = 0 R=0 R=0 λ = 0 \lambda=0 λ=0,电路自由振荡,频率: f = 1 2 π L C f=\frac{1}{2\pi\sqrt{LC}} f=2πLC 1
     ∙ \bullet 当电路 R R R不太大时 λ < 1 \lambda<1 λ<1,每当电流经过电阻便消耗一部分能量,振荡幅度逐渐衰减 f = 1 2 π 1 L C − R 2 4 L 2 f=\frac{1}{2\pi}\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}} f=2π1LC14L2R2
     ∙ \bullet 当电路电阻过大时 λ > 1 \lambda>1 λ>1,放电过程缓慢,出现过阻尼
   6、磁介质
    1)磁化场:线圈中通入电流后,由外加电流产生并正比于外加电流的磁场,并且该电流为 励 磁 电 流 \boldsymbol{励磁电流}
    2)分子电流假说:在磁化场磁矩作用下,分子环流的磁矩沿场方向排列,宏观角度上,截面内所有分子环流的总体与截面边缘的大环流电流(磁化电流)等效
     ∙ \bullet 磁化强度: M = ∑ m Δ V , ∑ m \boldsymbol M=\frac{\sum \boldsymbol {m}}{\Delta V},\sum m M=ΔVm,m表示该体积元内所有分子磁矩矢量和
     ∙ \bullet 磁介质中磁感应强度: B = B 0 + B ′ , B ′ \boldsymbol B=\boldsymbol B_0+\boldsymbol B',\boldsymbol B' B=B0+B,B为附加磁感应强度
    ( B ′ = μ 0 M × l ( 1 + ( l d ) 2 ) × d ; l i m l → ∞ B ′ = μ 0 M ; lim ⁡ d → 0 B ′ = 0 \boldsymbol B'=\frac{\mu_0\boldsymbol M\times l}{\sqrt(1+(\frac{l}{d})^2)\times d};lim_{l\to \infty}\boldsymbol B'=\mu_0\boldsymbol M;\lim_{d\to0}\boldsymbol B'=0 B=( 1+(dl)2)×dμ0M×l;limlB=μ0M;limd0B=0
    3)磁场强度: H = B μ 0 − M \boldsymbol H=\frac{\boldsymbol B}{\mu_0}-\boldsymbol M H=μ0BM
     ∮ i n L H d I = ∑ i n L I 0 , I 0 \oint_{inL}\boldsymbol Hd\boldsymbol I=\sum_{inL}I_0,I_0 inLHdI=inLI0,I0表示穿过 L L L环路的传导电流
    4)边界条件:(1)磁感应强度 B \boldsymbol B B法线分量的连续性;(2)磁场强度 H \boldsymbol H H切线分量的连续性
     ⋄ \diamond 界面两侧磁感应线与法线夹角的正切比等于两侧的磁导率之比(铁芯磁导率 μ 1 \mu_1 μ1越大, θ 1 \theta_1 θ1越接近 90 ° 90° 90°,磁感线近似于表面平行,从而漏磁通越少)
    5)磁路定理:闭合磁路的磁动势等于各段磁路上磁位降落和( e m = ∑ H i I i = Φ B ∑ R m i , e m = N I 0 , R m i = I i μ i μ 0 S i , H i I i = Φ B R m i e_m=\sum H_i I_i=\Phi_B\sum R_{mi},e_m=NI_0,R_mi=\frac{I_i}{\mu_i\mu_0S_i},H_i I_i=\Phi_BR_{mi} em=HiIi=ΦBRmi,em=NI0,Rmi=μiμ0SiIi,HiIi=ΦBRmi,分别对应磁动势、磁阻、磁位降落)
   7、变压器
    1)理想条件:无漏磁、绕组无损耗、铁芯无损耗、原副线圈感抗 ∞ \infty
    2)变比公式: Ψ ~ 1 = N 1 Φ ~ = Ψ ~ 11 + Ψ ~ 21 = L 1 I 1 ~ + M 21 I 2 ~ , Ψ ~ 2 = N 2 Φ ~ , Φ \widetilde \Psi_1=N_1\widetilde\Phi=\widetilde\Psi_{11}+\widetilde\Psi_{21}=L_1\widetilde{I_1}+M_{21}\widetilde{I_2},\widetilde\Psi_2=N_2\widetilde\Phi,\Phi Ψ 1=N1Φ =Ψ 11+Ψ 21=L1I1 +M21I2 ,Ψ 2=N2Φ ,Φ为磁芯任意横截面磁通量,且为自感磁通与互感磁通之和
     e ~ = − d Ψ ~ 1 d t = − j ω Ψ ~ 1 \widetilde e=-\frac{d\widetilde\Psi_1}{dt}=-j\omega\widetilde\Psi_1 e =dtdΨ 1=jωΨ 1
     ∙ \bullet 阻抗匹配:电路负载与电源内阻相等,输出到负载功率最大
     ∙ \bullet 反射阻抗: R ′ = ( N 2 N 1 ) 2 R R'=(\frac{N_2}{N_1})^2R R=(N1N2)2R反射到副边的阻抗
2021-9-14 07:43:32
   1、麦克斯韦方程
    1)位移电流: d Φ D d t , Φ D = ∬ D d S , D \frac{d\Phi_D}{dt},\Phi_D=\iint{\boldsymbol D d\boldsymbol S},D dtdΦD,ΦD=DdS,D为电位移矢量(电通量密度):电场中通过某一有向面的电场线的条数
    2)方程组
     ∯ D ⋅ d S = q 0 \oiint \boldsymbol D·d\boldsymbol S=q_0 DdS=q0
     ∮ E ⋅ d I = − ∬ ∂ B ∂ t d S \oint\boldsymbol E·d\boldsymbol I=-\iint\frac{\partial\boldsymbol B}{\partial t}d\boldsymbol S EdI=tBdS
     ∯ B ⋅ d S = 0 \oiint \boldsymbol B·d\boldsymbol S=0 BdS=0
     ∮ H ⋅ d I = I 0 + ∬ ∂ D ∂ t d S , I 0 \oint\boldsymbol H·d\boldsymbol I=I_0+\iint\frac{\partial\boldsymbol D}{\partial t}d\boldsymbol S,I_0 HdI=I0+tDdS,I0为传导电流( I 0 = ∬ j d S I_0=\iint\boldsymbol jd\boldsymbol S I0=jdS
    3)全电流始终连续( I = I 0 + d Φ D d t I=I_0+\frac{d\Phi_D}{dt} I=I0+dtdΦD
    4)宏观电磁场微分形式
     ▽ ⋅ D = ρ e , ρ e \triangledown\boldsymbol·D=\rho_e,\rho_e D=ρe,ρe为电荷体密度(高斯定理微分形式)
     ▽ × E = − ∂ B ∂ t \triangledown\times\boldsymbol E=-\frac{\partial \boldsymbol B}{\partial t} ×E=tB
     ▽ ⋅ B = 0 \triangledown·\boldsymbol B=0 B=0
     ▽ × H = j 0 + ∂ D ∂ t , j 0 \triangledown\times\boldsymbol H=\boldsymbol j_0+\frac{\partial\boldsymbol D}{\partial t},\boldsymbol j_0 ×H=j0+tD,j0为传导电流密度, ∂ D ∂ t \frac{\partial\boldsymbol D}{\partial t} tD为位移电流密度
     ∙ D = ϵ ϵ 0 E \bullet \boldsymbol D=\epsilon\epsilon_0\boldsymbol E D=ϵϵ0E
     ∙ B = μ μ 0 H \bullet \boldsymbol B=\mu\mu_0\boldsymbol H B=μμ0H
     ∙ j 0 = σ E \bullet \boldsymbol j_0=\sigma\boldsymbol E j0=σE
     ϵ   μ   σ \epsilon \mu \sigma ϵ μ σ为相对介电常数、相对磁导率、相对电导率
    5)基本形式
     ▽ ⋅ E = ρ e ϵ 0 \triangledown·\boldsymbol E=\frac{\rho_e}{\epsilon_0} E=ϵ0ρe
     ▽ × E = − ∂ B ∂ t \triangledown \times\boldsymbol E=-\frac{\partial\boldsymbol B}{\partial t} ×E=tB
     ▽ ⋅ B = 0 \triangledown·\boldsymbol B=0 B=0
     ▽ × B = ϵ 0 μ 0 ∂ E ∂ t + μ 0 I 0 \triangledown\times\boldsymbol B=\epsilon_0\mu_0\frac{\partial\boldsymbol E}{\partial t}+\mu_0\boldsymbol I_0 ×B=ϵ0μ0tE+μ0I0
   2、电磁波
    1)产生及传递条件
    (1)振荡电路产生,由于 R R R不断消耗导致振荡逐渐衰减,需要电路提供稳定能量
    (2)传输条件:高频(电磁波辐射能量与其固有频率四次方成正比)、电路须开放(储能元件储存电磁能,须开放电路将相关能量释放至空间)
    2)性质
    (1)横波特性
    (2)电矢量与磁矢量同相位且相互垂直
    (3)电磁矢量幅度成比例
    (4)传播速度: v = 1 ϵ ϵ 0 μ μ 0 = c v=\frac{1}{\sqrt{\epsilon\epsilon_0\mu\mu_0}}=c v=ϵϵ0μμ0 1=c(真空中: ϵ = μ = 1 \epsilon=\mu=1 ϵ=μ=1
    3)电磁能量( W = W e + W m = 1 2 ∭ V ( D ⋅ E + B ⋅ H ) d V , D = ϵ ϵ 0 E , B = μ μ 0 H W=W_e+W_m=\frac{1}{2}\iiint_V(\boldsymbol D·\boldsymbol E+\boldsymbol B·\boldsymbol H)dV,\boldsymbol D=\epsilon\epsilon_0\boldsymbol E,\boldsymbol B=\mu\mu_0\boldsymbol H W=We+Wm=21V(DE+BH)dV,D=ϵϵ0E,B=μμ0H
     ∂ ∂ t ( D ⋅ E + B ⋅ H ) = 2 E ⋅ ∂ D ∂ t + 2 H ⋅ ∂ B ∂ t \frac{\partial}{\partial t}(\boldsymbol D·\boldsymbol E+\boldsymbol B·\boldsymbol H)=2\boldsymbol E·\frac{\partial\boldsymbol D}{\partial t}+2\boldsymbol H·\frac{\partial\boldsymbol B}{\partial t} t(DE+BH)=2EtD+2HtB

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值