充分降维的基本概念与理解

1. 充分降维的概念

本章笔记来自wiki,符号与论文统一

1.1. 概要

  • 在统计学中,充分降维(SDR)是一种分析数据的范例,它结合了降维的思想和充分性的概念。
  • 有响应变量 Y Y Y和预测变量 X X X。回归分析就是去学习 Y ∣ X Y|X YX的分布。也就是给定 X X X Y Y Y的条件分布
  • E ( y ∣ X = x ) = E ( a + b x + ϵ ∣ X = x ) = a + b x E(y|X=x)=E(a+bx+\epsilon|X=x)=a+bx E(yX=x)=E(a+bx+ϵX=x)=a+bx
  • 降维就是一个函数 R ( X ) R(X) R(X),把 X X X映射到 R k \mathbb{R}^k Rk上,其中 k < p k < p k<p。举个例子, R ( X ) R(X) R(X)可以是 X X X的一个或多个线性组合。
  • 一个降维函数 R ( X ) R(X) R(X)倘若能使得 Y ∣ R ( X ) Y|R(X) YR(X)的分布与 Y ∣ X Y|X YX的相同,便被称之充分降维。换言之,在充分降维里,没有因为 X X X的维度减少而发生回归信息的丢失
  • 高维图形可视化里可用。大多数都是关注涉及 X X X的线性组合的降维

1.2. 降维子空间(DRS)

  • 假设 R ( X ) = β T X R(X)=\beta^TX R(X)=βTX是个充分降维的函数。在这里有 β ∈ R p × k \beta\in\mathbb{R}^{p\times k} βRp×k,且 k ≤ p k\leq p kp
  • 那么,可以通过研究 Y ∣ β T X Y|\beta^TX YβTX的分布来推断关于 Y ∣ X Y|X YX的回归信息。
  • 在不失一般性的情况下,可以只考虑 β \beta β列向量张成的空间。令 η \eta η作为 β \beta β的列向量空间的基,然后有 η \eta η张成的空间 S ( η ) S(\eta) S(η)
  • 根据充分降维的定义,有
    F Y ∣ X = F Y ∣ η T X F_{Y|X}=F_{Y|\eta^TX} FYX=FYηTX
    F F F为合适的分布函数
  • 另一种写法有
    Y ⊥  ⁣ ⁣ ⁣ ⊥ X ∣ η T X Y \perp \!\!\! \perp X |\eta^TX YXηTX
    也就是条件独立。在给定 η T X \eta^TX ηTX的情况下, Y Y Y条件独立于 X X X。这代表了在这一条件下,Y和X内容无关,摘干净了, Y = y 1 , ⋯   , y n Y=y_1,\cdots,y_n Y=y1,,yn不会因为 X X X而不独立,换言之没有信息损失
  • 那么称呼子空间 S ( η ) S(\eta) S(η)为降维子空间【DRS】
    【理解:也就是这整个子空间可以把 X X X处理到低维还不丢信息。】
    η T \eta^T ηT大小是 # b a s i s ( β ) × p \#basis(\beta)\times p #basis(β)×p

1.3. 结构维度

  • 对于回归 Y ∣ X Y|X YX结构维度 d d d是保持 Y ∣ X Y|X YX的条件分布所必须的 X X X的不同线性组合的最小数目【对应论文的 q q q
  • 换言之,对应的DRS是 d d d维的【其他的DRS维度可以大于d;d是基的个数?】

1.4. 最小降维子空间

  • 一个子空间 S S S可以被称为 Y ∣ X Y|X YX的最小降维子空间,如果它是个降维子空间且它的维度不大于 Y ∣ X Y|X YX的其他DRSs。一个最小子空间 S S S未必是唯一的,但是它的维度必然等于 Y ∣ X Y|X YX的结构维度 d d d
  • S S S有基 η \eta η同时是最小DRS,Y与 η T X \eta^TX ηTX的图是个 d + 1 d+1 d+1维的minimal sufficient summary plot(?)

2. 中心子空间【属于最小降维子空间】

  • 如果一个子空间 S S S Y ∣ X Y|X YX的DRS,且 S ⊂ S d r s S\subset S_{drs} SSdrs。这里的 S d r s S_{drs} Sdrs是指其他全部的DRSs。那么这个子空间 S S S就被叫做中心降维子空间,或者就简称中心子空间,使用符号 S Y ∣ X S_{Y|X} SYX来代表。
  • 换言之, Y ∣ X Y|X YX的中心子空间存在    ⟺    \iff 所有降维子空间的交 ⋂ S d r s \bigcap S_{drs} Sdrs是降维子空间。这个交就是中心子空间。
  • 中心子空间未必存在。但是若 S Y ∣ X S_{Y|X} SYX存在,那么就也是唯一的最小降维子空间。

2.1. 中心子空间的存在性

  • 虽然并不是在每种回归情况下都保证中心子空间 S Y ∣ X S_{Y|X} SYX的存在,但是有一些相当广泛的条件直接保证了中心子空间的存在。例如,考虑Cook(1998)提出的命题(略)。根据这个命题,对于这样的 X X X,中心子空间 S Y ∣ X S_{Y|X} SYX存在。

2.2 示例

考虑回归模型
Y = α + β T X + ε Y = \alpha + \beta^TX+\varepsilon Y=α+βTX+ε。有 ε ⊥  ⁣ ⁣ ⁣ ⊥ X \varepsilon \perp \!\!\! \perp X εX

  • 注意 Y ∣ X Y|X YX Y ∣ β T X Y|\beta^TX YβTX的分布相同。因此 β \beta β张成的子空间就是降维子空间。同样的, β \beta β是一维的(除非是0向量),所以这个回归的结构维数是 d = 1 d=1 d=1
  • OLS估计出的 β \beta β的估计 β ^ \hat{\beta} β^是一致的,因此 β \beta β张成的空间是 S Y ∣ X S_{Y|X} SYX的一致估计量。

以上的符号尚未同一


3. 充分降维概览

本节来自论文1.2节

3.1. 背景介绍

  • 高维稀疏数据结构限制了局部平滑的测试(?)方法,因此维数灾难问题浮出水面然而大多数测试方法不能有效工作。
  • 因此使用降维
  • 常见的降维方法有SDR(重点),偏最小二乘法,主成分分析
  • 充分降维面对的是
  1. 处理数据结构的稀疏性且没有预先指定的参数化模型结构
  2. 不丢失任何关于 Y Y Y关于 X X X回归的信息
  • 做法是将原始数据投影到低维子空间

3.2. 定义

  • S Y ∣ X S_{Y|X} SYX代表中心子空间,定义为满足
    Y ⊥  ⁣ ⁣ ⁣ ⊥ X ∣ P S X Y \perp \!\!\! \perp X|P_SX YXPSX
    的所有子空间S的交集
  • 上式中 P ( ⋅ ) P_{(\cdot)} P()代表投影操作,就是指示关于标准内积的投影运算符。 P S P_S PS对标wiki中的 η T \eta^T ηT【也就是 P S P_S PS大小为 # b a s i s ( η ) × p \#basis(\eta)\times p #basis(η)×p
  • 条件均值记作 E ( Y ∣ X ) E(Y|X) E(YX)
  • S E ( Y ∣ X ) S_{E(Y|X)} SE(YX)是中心均值子空间,实际是所有子空间 S S S的交,使得
    Y ⊥  ⁣ ⁣ ⁣ ⊥ E ( Y ∣ X ) ∣ P S X Y \perp \!\!\! \perp E(Y|X)|P_SX YE(YX)PSX
  • 在任何情况下,充分的降维使得我们可以找到 q ≤ p q\leq p qp个新的预测因子,可以写成原始预测因子的线性组合:
    β 1 T X , ⋯   , β q T X \beta_1^TX,\cdots,\beta_q^TX β1TX,,βqTX
    β i \beta_i βi i = 1 , ⋯   , q i=1,\cdots,q i=1,,q被视为中心子空间亦或者中心均值子空间的基

3.3 进展

  • 逆回归
  • 直接回归
  • 相关方法如傅里叶方法

3.4. 缺陷

  • 逆回归方法实现简单,应用广泛。但这些方法都需要较强的预测条件,如线性条件或恒条件方差条件,甚至不能全面实现中心子空间的一致估计
  • 相反,直接回归方法对预测因子的分布要求较弱,在有限样本中表现得更好。然而,这些方法除了寻找中心平均子空间外没有其他方向,计算量大
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值