贝叶斯分类器算法及案例详解

本文详细介绍了贝叶斯分类器的原理和应用,包括朴素贝叶斯分类器的离散型和连续型处理,半朴素贝叶斯分类器的SPODE、AODE和TAN算法,以及贝叶斯网络的概念。通过案例分析,阐述了如何使用这些分类器进行概率计算和决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:vicky_siyu 致谢:小龙快跑jly, 巧儿、克力,Esther_or so,雨佳小和尚,老实憨厚的叶子

本文是对贝叶斯分类器(包括朴素贝叶斯分类器,半朴素贝叶斯分类器及贝叶斯网络)算法的演算及案例的详细分析。本文只是在学习后进行了总结并加入了自己的理解,如有不妥之处,还望海涵,也希望大家多多指教,一起学习!

ps.建议先阅读“理解贝叶斯分类器原理及关系 https://blog.csdn.net/weixin_43742744/article/details/85492334 ” 后再阅读本文,会对上述几种贝叶斯分类器有更深入的理解。

一、 朴素贝叶斯分类器

特点:假设输入的变量的特征属性之间具有很强的独立性。
即假设x1,x2,….,xn相互独立。{若AB相互独立,则P(AB)=P(A)P(B)}
通过这个假设,可以把联合分布概率转化为多个类条件概率的乘积。
(以下公式来自SIGAI–机器学习—雷老师)
在这里插入图片描述
朴素贝叶斯分类器既可以处理离散数值的分类问题,也能处理连续数值的分类问题。
下面分别结合公式和案例分析如何处理这两类问题。

1)离散型

在这里插入图片描述
(PS. 拉普拉斯平滑处理是平滑处理的一种方式。平滑处理是为了避免某一类样本数量为0,导致该样本出现的概率为0。只要有一个概率为0,预测函数将概率连乘后就为0了。为了避免这种情况,我们在分子加上λ,分母加上Kλ,保证所有概率都非零。拉普拉斯平滑是λ=1的情况。)

2)连续型

当样本的特征是连续型的数值时,条件概率的分布通常假设为高斯分布,其朴素贝叶斯被称为高斯朴素贝叶斯。高斯分布又分为一维正态分布和多维正态分布。下面依次介绍两种正态分布。
 一维正态分布
在这里插入图片描述
为了得到函数,需要求出均值和方差:
求得均值和方差后,我们可以得到某类的不同特征属性的高斯函数。
最大化后验概率正比于似然与先验的乘积,算出似然后,还需计算先验概率。
i. 假设各类出现的概率一样
在这里插入图片描述
ii. 仅考虑训练样本数据时
在这里插入图片描述
平滑处理后的概率:(λ=1时为拉普拉斯平滑修正)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值