One-Shot Unsupervised Cross Domain Translation
给定来自域A的单个图像x和来自域B的一组图像,任务是在B中生成x的相似物。
在第二阶段中,将变异型自动编码器克隆,以创建两个副本,它们共享编码器的顶层和解码器的底层,一个副本用于B中的样本,
从第一步开始,来自域B的样本将继续训练自己的副本,同时更新共享层和非共享层。 样本x的渐变仅更新未共享的图层,而不更新共享的图层(这样做是为了防止过拟合)
因为是较早之前的论文,很想现在的gan,也有判别器作为损失函数。