数值分析复习(二)拉格朗日插值法、插值余项与误差估计

拉格朗日插值法

数值分析复习(一)线性插值、抛物线插值中我们讨论过线性插值与二次插值,其实都是接下来要讲的拉格朗日插值的特殊情况,接下来我们一一分析:

定义插值基函数:

n次多项式l_j(x)(j=0,1,\cdots,n)在n+1个节点x_0<x_1<\cdots<x_n上满足条件:

l_j(x_k)= \left\{ \begin{array}{l} 1,k=j, \\ 0,k\neq j,\\ \end{array} \right. j,k=0,1,\cdots,n

就称这n+1个n次多项式l_0(x),l_1(x),\cdots l_n(x)为节点x_0,x_1,\cdots,x_n上的n次插值基函数。

l_k(x)=\frac{(x-x_0) \cdots (x-x_{k-1})(x-x_{k+1})\cdots (x-x_n)}{(x_k-x_0) \cdots (x_k-x_{k-1}) (x_k-x_{k+1} \cdots (x_k-x_n)},k=0,1,\cdots,n

引入记号:

拉格朗日插值多项式可变换为:

L_n(x)=\sum_{k=0}^{n}y_k l_k(x)=\sum_{k=0}^{n}y_k \frac{ \omega_{n+1}(x)}{(x-x_k)\omega_{n+1}^{'}(x_k)}

当n=1时,L_1(x)=y_0\frac{x-x_1}{x_0-x_1}+y_1\frac{x-x_0}{x_1-x_0},为线性插值

当n=2时,L_2(x)=y_0\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}+y_1\frac{(x-x_0)(x-x_2)}{(x1-x_0)(x_1-x_2)}+y_2\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)},展开后可得抛物线插值

 

注:n次插值多项式L_n(x)通常是次数为n的多项式,特殊情况下次数可能小于n,如当二次插值多项式插值的三点共线时L_2(x)将退化为一次多项式

插值余项与误差估计

R_n(x)=f(x)-L_n(x),x\in [a,b]为插值多项式的截断误差,也称余项

有如下定理:

通过余项表达式我们可以知道,若插值函数f_(x) \in H_nH_n代表次数小于等于n的多项式集合),由于f^{(n+1)}(x)=0,故R_n(x)=f(x)-L_n(x)=0,即它的插值多项式为其本身。 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值