数值分析复习:Lagrange插值

本文详细介绍了拉格朗日插值的基本概念、插值条件、基函数表达式、插值多项式及其构造,以及余项估计的方法,通过罗尔中值定理确保了插值误差的界。适合个人复习,非新手入门。
摘要由CSDN通过智能技术生成

本篇文章适合个人复习翻阅,不建议新手入门使用

拉格朗日(Lagrange)插值

拉格朗日(Lagrange)插值,又称L插值

插值条件

n + 1 n+1 n+1 个插值节点 x 0 , x 1 , … , x n x_0,x_1,\dots,x_n x0,x1,,xn处函数值相同(插值节点均在区间 [ a , b ] [a,b] [a,b]上)

基函数

{ l i ( x ) } i = 0 n \{l_i(x)\}_{i=0}^n {li(x)}i=0n,其中 l i ( x ) = ∏ j ≠ i ( x − x j ) ∏ j ≠ i ( x i − x j ) l_i(x)=\frac{\prod\limits_{j\neq i}(x-x_j)}{\prod\limits_{j\neq i}(x_i-x_j)} li(x)=j=i(xixj)j=i(xxj)其性质: l i ( x j ) = δ i j l_i(x_j)=\delta_{ij} li(xj)=δij

插值多项式

L n ( x ) = ∑ i = 0 n y i l i ( x ) = ∑ i = 0 n y i ω n + 1 ( x ) ( x − x i ) ω n + 1 ′ ( x i ) \begin{split} L_n(x)&=\sum\limits_{i=0}^ny_il_i(x)\\ &=\sum\limits_{i=0}^ny_i\frac{\omega_{n+1}(x)}{(x-x_i)\omega_{n+1}'(x_i)} \end{split} Ln(x)=i=0nyili(x)=i=0nyi(xxi)ωn+1(xi)ωn+1(x)其中 ω n + 1 ( x ) = ( x − x 0 ) ⋯ ( x − x n ) \omega_{n+1}(x)=(x-x_0)\cdots(x-x_n) ωn+1(x)=(xx0)(xxn) 为节点多项式

余项估计

∣ R n ( x ) ∣ ≤ C n + 1 ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ |R_n(x)|\leq \frac{C_{n+1}}{(n+1)!}|\omega_{n+1}(x)| Rn(x)(n+1)!Cn+1ωn+1(x)其中 R n ( x ) = f ( x ) − L n ( x ) R_n(x)=f(x)-L_n(x) Rn(x)=f(x)Ln(x)为插值余项, C n + 1 C_{n+1} Cn+1 f ( x ) f(x) f(x) n + 1 n+1 n+1阶导函数的界

证明:(构造辅助函数+罗尔(Rolle)中值定理)
E ( t ) = R n ( t ) − R n ( x ) ω n + 1 ( x ) ω n + 1 ( t ) E(t)=R_n(t)-\frac{R_n(x)}{\omega_{n+1}(x)}\omega_{n+1}(t) E(t)=Rn(t)ωn+1(x)Rn(x)ωn+1(t) E ( t ) E(t) E(t) [ a , b ] [a,b] [a,b] n + 1 n+1 n+1次连续可微,且有 n + 2 n+2 n+2个零点 x 0 , x 1 , … , x n , x x_0,x_1,\dots,x_n,x x0,x1,,xn,x

由Rolle中值定理,存在 ξ ∈ [ a , b ] , s . t . E ( n + 1 ) ( ξ ) = 0 \xi\in[a,b],s.t.E^{(n+1)}(\xi)=0 ξ[a,b],s.t.E(n+1)(ξ)=0,又
E n + 1 ( ξ ) = R n ( n + 1 ) ( ξ ) − R n ( x ) ω n + 1 ( x ) ( n + 1 ) ! = f ( n + 1 ) ( ξ ) − R n ( x ) ω n + 1 ( x ) ( n + 1 ) ! = 0 \begin{split} E_{n+1}(\xi)&=R_n^{(n+1)}(\xi)-\frac{R_n(x)}{\omega_{n+1}(x)}(n+1)!\\ &=f^{(n+1)}(\xi)-\frac{R_n(x)}{\omega_{n+1}(x)}(n+1)!\\ &=0\\ \end{split} En+1(ξ)=Rn(n+1)(ξ)ωn+1(x)Rn(x)(n+1)!=f(n+1)(ξ)ωn+1(x)Rn(x)(n+1)!=0
∣ R n ( x ) ∣ = ∣ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ⋅ ω n + 1 ( x ) ∣ ≤ C n + 1 ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ |R_n(x)|=|\frac{f^{(n+1)}(\xi)}{(n+1)!}\cdot\omega_{n+1}(x)|\leq\frac{C_{n+1}}{(n+1)!}|\omega_{n+1}(x)| Rn(x)=(n+1)!f(n+1)(ξ)ωn+1(x)(n+1)!Cn+1ωn+1(x)

参考书籍:《数值分析》李庆扬 王能超 易大义 编

  • 19
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值