K-均值聚类算法是一种常用的无监督学习算法,用于将数据集分割成 K 个不同的簇。该算法的核心思想是将数据点划分到 K 个簇中,使得每个数据点与所属簇的质心之间的距离最小化。
算法步骤如下:
- 随机选择 K 个质心,即初始聚类中心。
- 将每个数据点分配到最近的质心簇。
- 更新质心的位置,即计算每个簇的平均值。
- 重复步骤2和步骤3,直到质心的位置不再变化或达到最大迭代次数。
K-均值聚类算法的优点包括:
- 简单、易于实现,计算效率高。
- 对大规模数据集也有较好的可扩展性。
- 能够对数据进行分割,形成具有簇结构的数据子集,便于后续分析。
K-均值聚类算法的缺点包括:
- 需要事先指定簇的数量 K,但实际应用中往往难以确定最佳的 K 值。
- 对初始质心的选择敏感,不同的初始质心可能导致不同的聚类结果。
- 对于非球形簇结构的数据,效果可能不佳,容易收敛到局部最优解。
- 对于异常值或噪声点敏感,可能导致聚类结果不稳定。
为了改进 K-均值聚类算法的不足,研究人员提出了一些改进和扩展方法,如加权 K-均值聚类、谱聚类、层次聚类等。这些改进算法可以更好地处理特定类型的数据或应对特定的问题。