基于准反射学习的哈里斯鹰优化算法

一、理论基础

1、哈里斯鹰优化算法

请参考这里

2、改进哈里斯鹰优化算法

(1)基于反向学习

Tizhoosh[1]首先提出了基于反向的学习(OBL)。其主要思想是生成可行解的反向解,评价反向解,选择更好的候选解。一般来说,相反的数比随机数更接近最优解。具体计算公式如下:
x i x_i xi为个体的可行解, x i o x_i^o xio为其反向解,则: x i o = lb i + ub i − x i (1) x_i^o=\text{lb}_i+\text{ub}_i-x_i\tag{1} xio=lbi+ubixi(1)其中, x i ∈ [ lb i , ub i ] ∀ i ∈ 1 , 2 , ⋯   , d x_i\in[\text{lb}_i,\text{ub}_i]\quad \forall i\in 1,2,\cdots,d xi[lbi,ubi]i1,2,,d

(2)基于准反向学习

OBL的一种变体称为准反向学习(QOBL),由Rahnamayan[2]提出。以往的研究已经证明,在寻找全局最优解时,使用准反向解比反向解更有效。具体表达式如下图所示。
在这里插入图片描述

图1 准反向学习

(3)基于准反射学习

基于OBL和QOBL,Qian Fan等[3]提出了一种新的准反射学习机制QRBL。计算过程如下:
在这里插入图片描述

图2 准反射学习

分别将反向学习、准反向学习和准反射学习的机制应用于HHO算法的种群初始化和下一次迭代时确定种群位置上,分别命名为OHHO、QOHHO和QRHHO。

二、仿真实验与分析

将基于准反射学习的哈里斯鹰优化算法(QRHHO)分别与基本哈里斯鹰优化算法(HHO)、基于反向学习的哈里斯鹰优化算法(OHHO)、基于准反向学习的哈里斯鹰优化算法(QOHHO)进行对比,以文献[3]中的F1、F2(单峰函数100维)、F11、F12、F13(多峰函数100维)、F17(2维)、F18(2维)、F19(3维)、F20(6维) (固定维度多峰函数)为例。设置种群规模 N = 30 N=30 N=30,最大迭代次数 T = 500 T=500 T=500,每个算法独立运行30次。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
HHO:最差值: 1.2731e-90,最优值:2.0717e-110,平均值:4.2454e-92,标准差:2.3243e-91
OHHO:最差值: 8.6188e-303,最优值:0,平均值:2.8792e-304,标准差:0
QOHHO:最差值: 0,最优值:0,平均值:0,标准差:0
QRHHO:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F2
HHO:最差值: 3.4447e-45,最优值:1.2333e-60,平均值:1.1485e-46,标准差:6.289e-46
OHHO:最差值: 6.2491e-160,最优值:5.9471e-223,平均值:2.083e-161,标准差:1.141e-160
QOHHO:最差值: 7.4277e-257,最优值:1.1024e-274,平均值:2.542e-258,标准差:0
QRHHO:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F11
HHO:最差值: 0,最优值:0,平均值:0,标准差:0
OHHO:最差值: 0,最优值:0,平均值:0,标准差:0
QOHHO:最差值: 0,最优值:0,平均值:0,标准差:0
QRHHO:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F12
HHO:最差值: 2.9021e-05,最优值:8.4409e-09,平均值:5.1788e-06,标准差:7.5996e-06
OHHO:最差值: 1.4015e-05,最优值:1.8351e-08,平均值:2.5871e-06,标准差:3.3188e-06
QOHHO:最差值: 0.00013169,最优值:7.9736e-06,平均值:4.5659e-05,标准差:2.7718e-05
QRHHO:最差值: 5.4254e-06,最优值:1.5022e-09,平均值:9.6109e-07,标准差:1.4167e-06
函数:F13
HHO:最差值: 0.00034871,最优值:3.3944e-08,平均值:7.2888e-05,标准差:9.5426e-05
OHHO:最差值: 0.00103,最优值:1.7772e-06,平均值:0.00015569,标准差:0.00022537
QOHHO:最差值: 0.0051761,最优值:0.00075145,平均值:0.0022944,标准差:0.0012592
QRHHO:最差值: 0.00048312,最优值:2.4457e-09,平均值:7.5844e-05,标准差:0.0001282
函数:F17
HHO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:3.1872e-07
OHHO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:3.2152e-07
QOHHO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:4.2038e-07
QRHHO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:3.9804e-07
函数:F18
HHO:最差值: 30.0001,最优值:3,平均值:5.7,标准差:8.2385
OHHO:最差值: 30.0001,最优值:3,平均值:3.9,标准差:4.9295
QOHHO:最差值: 3,最优值:3,平均值:3,标准差:3.6623e-06
QRHHO:最差值: 30,最优值:3,平均值:3.9,标准差:4.9295
函数:F19
HHO:最差值: -3.0898,最优值:-3.8628,平均值:-3.8112,标准差:0.1961
OHHO:最差值: -3.8627,最优值:-3.8628,平均值:-3.8628,标准差:9.074e-06
QOHHO:最差值: -3.8627,最优值:-3.8628,平均值:-3.8628,标准差:9.6956e-06
QRHHO:最差值: -3.0898,最优值:-3.8628,平均值:-3.837,标准差:0.14113
函数:F20
HHO:最差值: -3.1729,最优值:-3.3219,平均值:-3.2843,标准差:0.058554
OHHO:最差值: -3.1912,最优值:-3.322,平均值:-3.2733,标准差:0.060452
QOHHO:最差值: -3.1642,最优值:-3.322,平均值:-3.2914,标准差:0.056491
QRHHO:最差值: -3.198,最优值:-3.322,平均值:-3.2978,标准差:0.048974

结果表明,QRHHO能有效地提高基本HHO和两种HHO变体的收敛速度和求解精度。

三、参考文献

[1] Tizhoosh, H. R. Opposition-Based Learning: A New Scheme for Machine Intelligence[C]. International Conference on International Conference on Computational Intelligence for Modelling, Control & Automation. IEEE, 2005: 695-701.
[2] Rahnamayan S, Tizhoosh H R, Salama M. Quasi-oppositional Differential Evolution[C]. 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007: 2229-2236.
[3] Fan, Q., Chen, Z. & Xia, Z. A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems[J]. Soft Computing, 2020, 24: 14825-14843.

  • 4
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 18
    评论
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值