基于拉丁超立方抽样与自适应策略的改进鲸鱼优化算法

一、理论基础

1、基本鲸鱼优化算法

请参考这里

2、改进的鲸鱼优化算法

为提高WOA算法的寻优性能,对WOA算法的三个方面进行改进,首先利用拉丁超立方体抽样方法初始化种群,增强WOA算法的种群多样性;再将非线性收敛因子取代基本WOA算法中的线性收敛因子,进一步提高算法寻优能力;最后将非线性惯性权重引入WOA算法中。以下将改进的鲸鱼优化算法记为LTWWOA算法。

(1)LHS方法初始化种群

请参考这里

(2)收敛因子的改进

本文提出一种非线性收敛因子,其数学表达式如下: a = 2 − 2 ⋅ tan ⁡ ( π ⋅ t 4 ⋅ t max ⁡ ) (1) a=2-2\cdot\tan(\frac{\pi\cdot t}{4\cdot t_{\max}})\tag{1} a=22tan(4tmaxπt)(1)其中, t max ⁡ t_{\max} tmax为最大迭代次数。本文取 t max ⁡ = 500 t_{\max}=500 tmax=500时,将改进的收敛因子 a a a与基本WOA算法中的收敛因子 a a a进行对比,对比图如图1所示。
在这里插入图片描述

图1 收敛因子 a a a变化对比图

由图1和式(1)可看出,基本WOA算法的收敛因子 a a a随算法迭代次数的增加呈线性递减,而本文提出的非线性收敛因子 a a a随算法迭代次数的增加呈非线性递减。这种方式,在算法前期收敛因子 a a a以较小的速度减小,保证了收敛系数 A A A前期值较大,使得座头鲸游走步长大,加快算法全局搜索,到算法迭代后期,收敛因子 a a a以较大的速度减小,使得收敛系数 A A A后期值较小,从而座头鲸游走步长小,使其能在最优解附近进行精确搜索,从而有效的平衡了算法的前期搜索和后期寻优能力。

(3)非线性惯性权重

受粒子群算法启发,为提高WOA算法的性能,避免其陷入局部最优解,将非线性惯性权重引入WOA算法,非线性惯性权重数学表达式如下: w = ( w s t − w e n d − k ) e 1 1 + t t max ⁡ u (2) w=(w_{st}-w_{end}-k)e^{\frac{1}{1+\frac{t}{t_{\max}}u}}\tag{2} w=(wstwendk)e1+tmaxtu1(2)其中, w s t w_{st} wst是初始惯性权重, w e n d w_{end} wend为最大迭代次数时的惯性权重, k k k u u u是控制系数,对 w w w的范围起调节作用。经大量测试, w s t w_{st} wst w e n d w_{end} wend分别取0.98和0.4, k k k u u u分别取0.21和11.2时,能使得LTWWOA算法表现性能较好。
根据WOA算法的三个位置更新公式,将非线性惯性权重 w w w引入WOA算法,得到LTWWOA算法的三个位置更新公式如下: X ‾ ( t + 1 ) = w ⋅ X ‾ ∗ ( t ) − A ‾ ⋅ D ‾ ∣ A ‾ ∣ < 1 , P < 0.5 (3) \overline X(t+1)=w\cdot\overline X^*(t)-\overline A\cdot\overline D\quad |\overline A|<1,P<0.5\tag{3} X(t+1)=wX(t)ADA<1,P<0.5(3) X ‾ ( t + 1 ) = w ⋅ D ‾ ′ ⋅ e b l cos ⁡ ( 2 π l ) + X ‾ ∗ ( t ) P ≥ 0.5 (4) \overline X(t+1)=w\cdot\overline D'\cdot e^{bl}\cos(2\pi l)+\overline X^*(t)\quad P≥0.5\tag{4} X(t+1)=wDeblcos(2πl)+X(t)P0.5(4) X ‾ ( t + 1 ) = w ⋅ X ‾ r a n d ( t ) − A ‾ ⋅ D ‾ ∣ A ‾ ∣ < 1 , P < 0.5 (5) \overline X(t+1)=w\cdot\overline X_{rand}(t)-\overline A\cdot\overline D\quad |\overline A|<1,P<0.5\tag{5} X(t+1)=wXrand(t)ADA<1,P<0.5(5)

(4)改进的鲸鱼优化算法流程

综合上述,对基本鲸鱼优化算法的三方面进行了改进,首先采用LHS方法进行初始化种群;再将非线性收敛因子替代基本WOA算法中的线性收敛因子,最后将非线性惯性权重引入鲸鱼优化算法中。LTWWOA算法详细流程如下图所示:
在这里插入图片描述

图2 LTWWOA算法流程图

二、仿真实验测试与分析

为验证LTWWOA算法的性能,将WOA算法、樽海鞘群算法(SSA)和灰狼优化算法(GWO)与LTWWOA算法根据选取的测试函数进行测试对比,以文献[1]中表1函数为例,各函数的维度均为30。为保证对比的公平性,各算法的最大迭代次数为1000,种群规模均为40,每个算法均独立运行40次。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
WOA:最差值: 2.4738e-161,最优值:3.4054e-180,平均值:8.5554e-163,标准差:3.8499e-162
LTWWOA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 1.6559e-08,最优值:6.5066e-09,平均值:1.0687e-08,标准差:2.4082e-09
GWO:最差值: 8.7944e-65,最优值:3.4793e-68,平均值:9.4437e-66,标准差:1.5777e-65
函数:F2
WOA:最差值: 4.5399e-106,最优值:4.8123e-117,平均值:1.3265e-107,标准差:7.1955e-107
LTWWOA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 2.6399,最优值:0.0015081,平均值:0.68045,标准差:0.61859
GWO:最差值: 2.3579e-37,最优值:7.116e-39,平均值:3.2767e-38,标准差:4.1236e-38
函数:F3
WOA:最差值: 29090.287,最优值:358.5828,平均值:13371.7949,标准差:7610.7016
LTWWOA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 327.8526,最优值:25.3843,平均值:109.7107,标准差:66.3778
GWO:最差值: 2.0466e-15,最优值:4.9261e-23,平均值:7.1214e-17,标准差:3.3837e-16
函数:F4
WOA:最差值: 0.0085325,最优值:2.3736e-06,平均值:0.0017882,标准差:0.0019982
LTWWOA:最差值: 0.00028729,最优值:1.3961e-07,平均值:6.4447e-05,标准差:6.8105e-05
SSA:最差值: 0.12179,最优值:0.01857,平均值:0.071069,标准差:0.028372
GWO:最差值: 0.0011999,最优值:0.00016006,平均值:0.0005802,标准差:0.00029682
函数:F5
WOA:最差值: 0.11363,最优值:0,平均值:0.0055237,标准差:0.021352
LTWWOA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 0.061363,最优值:2.6283e-08,平均值:0.010275,标准差:0.013024
GWO:最差值: 0.040096,最优值:0,平均值:0.002609,标准差:0.0074935
函数:F6
WOA:最差值: 0,最优值:0,平均值:0,标准差:0
LTWWOA:最差值: 0,最优值:0,平均值:0,标准差:0
SSA:最差值: 87.5561,最优值:25.8689,平均值:55.6181,标准差:15.6909
GWO:最差值: 17.9903,最优值:0,平均值:0.5641,标准差:2.917
函数:F7
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:3.8192e-15,标准差:2.3985e-15
LTWWOA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
SSA:最差值: 3.6819,最优值:2.1198e-05,平均值:1.7724,标准差:0.78803
GWO:最差值: 1.8652e-14,最优值:7.9936e-15,平均值:1.4833e-14,标准差:1.6852e-15
函数:F8
WOA:最差值: 0.023204,最优值:0.00028612,平均值:0.0025857,标准差:0.004087
LTWWOA:最差值: 0.0077721,最优值:0.00023959,平均值:0.0019399,标准差:0.0018902
SSA:最差值: 12.1504,最优值:0.37243,平均值:5.1611,标准差:2.5836
GWO:最差值: 0.065793,最优值:0.012647,平均值:0.030318,标准差:0.013688

结果表明,LTWWOA算法在收敛速度、精度和稳定性上相比于基本WOA算法都得到了提高,同时验证了本文提出的对基本WOA算法的三个方面改进策略是十分有效的。

三、参考文献

[1] 陈玉, 韩波, 许高齐, 等. 改进鲸鱼优化算法的空间直线度误差评定[J/OL]. 机械科学与技术: 1-11 [2021-07-27].

拉丁超立方抽样(Latin Hypercube Sampling,简称LHS)是一种改进立方抽样方法,用于初始化种群。它在立方抽样的基础上添加了拉丁化的步骤,以进一步增加样本点的均匀性。以下是拉丁超立方抽样初始化种群的优缺点: 优点: 1. 均匀性:拉丁超立方抽样可以确保样本点在每个维度上的均匀分布。这有助于覆盖参数空间的各个区域,并提供更好的探索性能。 2. 解耦性:拉丁超立方抽样使得每个维度上的样本点都是独立选择的,没有相互关联。这有助于减少参数之间的相互影响,并提供更好的参数独立性。 3. 多样性:由于拉丁化的步骤,拉丁超立方抽样可以确保每个维度上的样本点都是唯一的,避免了重复采样。这有助于增加种群中个体的多样性。 4. 可扩展性:拉丁超立方抽样适用于高维参数空间,并可以在不同维度上灵活地控制采样点的数量。这使得它适用于各种复杂的优化问题。 缺点: 1. 计算复杂度:拉丁超立方抽样的计算复杂度较高,特别是在高维参数空间中。需要生成和处理大量的样本点,可能会增加计算开销。 2. 参数依赖:拉丁超立方抽样的均匀性和独立性依赖于参数空间的维度和边界。对于某些特定的参数分布或约束条件,可能无法完全满足均匀性和独立性的要求。 3. 局部性:由于拉丁超立方抽样是基于离散化的方法,可能导致在参数空间中局部区域的采样点较少。这可能会影响算法在局部区域的搜索能力。 综上所述,拉丁超立方抽样初始化种群具有均匀性、解耦性、多样性和可扩展性等优点,但也存在计算复杂度高、参数依赖和局部性等缺点。在应用时,需要根据具体问题和需求综合考虑这些因素。如果你有任何进一步的问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值