基于领导者变异选择的哈里斯鹰优化算法

一、理论基础

1、哈里斯鹰优化算法

请参考这里

2、领导者变异选择的哈里斯鹰优化算法

2.1 探索阶段 ( ∣ E ∣ ≥ 1 ) \left(|E|\geq1\right) (E1)

定义第 i i i只鹰的自适应栖息概率( p a p i p_{ap}^i papi),它取决于当前鹰的适应度值(位置向量 X i X_i Xi f ( X i ) f(X_i) f(Xi))、迄今为止最佳鹰的适应度值(位置向量 X p r e y X_{prey} Xprey f ( X p r e y ) f(X_{prey}) f(Xprey))和迄今为止最差鹰的适应度值(位置向量 X w o r s t X_{worst} Xworst f ( X w o r s t ) f(X_{worst}) f(Xworst))。于是,自适应栖息概率( p a p i p_{ap}^i papi)可以建模为 p a p i = ∣ f ( X i ) − f ( X p r e y ) ∣ ∣ f ( X w o r s t ) − f ( X p r e y ) ∣ ,    i = 1 , 2 , ⋯   , N (1) p_{ap}^i=\frac{|f(X_i)-f(X_{prey})|}{|f(X_{worst})-f(X_{prey})|},\,\,i=1,2,\cdots,N\tag{1} papi=f(Xworst)f(Xprey)f(Xi)f(Xprey),i=1,2,,N(1)然后可将探索阶段建模为 X i ( n e w ) = { X r a n d ( t ) − r 1 ∣ X r a n d ( t ) − 2 r 2 X i ( t ) ∣     q ≥ p a p i ( X p r e y ( t ) − X m ( t ) ) − r 3 ( L B + r 4 ( U B − L B ) ) q < p a p i (2) X_i(new)=\begin{dcases}X_{rand}(t)-r_1|X_{rand}(t)-2r_2X_i(t)|\quad\quad\quad\quad\quad\quad\,\,\, q\geq p_{ap}^i\\\left(X_{prey}(t)-X_m(t)\right)-r_3\left(LB+r_4\left(UB-LB\right)\right)\quad q<p_{ap}^i\end{dcases}\tag{2} Xi(new)={Xrand(t)r1Xrand(t)2r2Xi(t)qpapi(Xprey(t)Xm(t))r3(LB+r4(UBLB))q<papi(2)其中 X m ( t ) X_m(t) Xm(t) N N N只鹰的当前种群的平均位置向量。

2.2 开发阶段 ( ∣ E ∣ < 1 ) \left(|E|<1\right) (E<1)

开发阶段可以建模为四种可能的攻击策略,类似于HHO,如下所示。

2.2.1 软围攻 ( r ≥ 0.5    and    ∣ E ∣ ≥ 0.5 ) (r\geq0.5\,\,\text{and}\,\,|E|\geq0.5) (r0.5andE0.5)

X i ( n e w ) = X p r e y ( t ) − X i ( t ) − E ∣ J X p r e y ( t ) − X i ( t ) ∣ (3) X_i(new)=X_{prey}(t)-X_i(t)-E|JX_{prey}(t)-X_i(t)|\tag{3} Xi(new)=Xprey(t)Xi(t)EJXprey(t)Xi(t)(3)其中 J J J是HHO中的跳跃强度。

2.2.2 硬围攻 ( r ≥ 0.5    and    ∣ E ∣ < 0.5 ) (r\geq0.5\,\,\text{and}\,\,|E|<0.5) (r0.5andE<0.5)

X i ( n e w ) = X p r e y ( t ) − E ∣ X p r e y ( t ) − X i ( t ) ∣ (4) X_i(new)=X_{prey}(t)-E|X_{prey}(t)-X_i(t)|\tag{4} Xi(new)=Xprey(t)EXprey(t)Xi(t)(4)

2.2.3 累速俯冲式软围攻 ( r < 0.5    and    ∣ E ∣ ≥ 0.5 ) (r<0.5\,\,\text{and}\,\,|E|\geq0.5) (r<0.5andE0.5)

X i ( n e w ) = { Y i   i f    f ( Y i ) < f ( X i ( t ) ) Z i i f    f ( Z i ) < f ( X i ( t ) ) (5) X_i(new)=\begin{dcases}Y_i\quad\, if\,\,f(Y_i)<f(X_i(t))\\Z_i\quad if\,\,f(Z_i)<f(X_i(t))\end{dcases}\tag{5} Xi(new)={Yiiff(Yi)<f(Xi(t))Ziiff(Zi)<f(Xi(t))(5)其中, Y i Y_i Yi Z i Z_i Zi是基本HHO中对应公式计算所得。

2.2.4 累速俯冲式硬围攻 ( r < 0.5    and    ∣ E ∣ < 0.5 ) (r<0.5\,\,\text{and}\,\,|E|<0.5) (r<0.5andE<0.5)

X i ( n e w ) = { Y i   i f    f ( Y i ) < f ( X i ( t ) ) Z i i f    f ( Z i ) < f ( X i ( t ) ) (6) X_i(new)=\begin{dcases}Y_i\quad\, if\,\,f(Y_i)<f(X_i(t))\\Z_i\quad if\,\,f(Z_i)<f(X_i(t))\end{dcases}\tag{6} Xi(new)={Yiiff(Yi)<f(Xi(t))Ziiff(Zi)<f(Xi(t))(6)其中, Y i Y_i Yi Z i Z_i Zi是基本HHO中对应公式计算所得。 \newline
HHO算法从探索到开发的转换取决于猎物的逃逸能量,逃逸能量随迭代次数变化的行为如图1所示。可以观察到,在最大迭代次数的50%之后,逃逸能量 ∣ E ∣ |E| E始终低于1,这表明HHO算法仅在最大迭代次数的50%后执行开发,这表明探索受到了限制。因此,最优值可能会搜索至局部最优值。为了补充HHO,提出了一种基于领导者变异的选择方法,有利于提高算法的探索能力。
在这里插入图片描述

图1 500次迭代中HHO猎物逃逸能量的变化曲线

2.3 基于领导者的变异选择

根据 N N N个鹰中新位置向量 X ( n e w ) X(new) X(new)的适应度函数值,定义最佳鹰位置向量 X b e s t t X_{best}^t Xbestt、次优鹰位置向量 X b e s t − 1 t X_{best-1}^t Xbest1t和第三优鹰位置向量 X b e s t − 2 t X_{best-2}^t Xbest2t。然后,第 i i i个哈里斯鹰的变异位置向量 X i ( m u t ) X_i(mut) Xi(mut)可以定义为 X i ( m u t ) = X i ( n e w ) + 2 ( 1 − t t max ⁡ ) ( 2 r a n d − 1 ) ( 2 X b e s t t − ( X b e s t − 1 t + X b e s t − 2 t ) ) + ( 2 r a n d − 1 ) ( X b e s t t − X i ( n e w ) ) (7) X_i(mut)=X_i(new)+2\left(1-\frac{t}{t_{\max}}\right)(2rand-1)(2X_{best}^t-(X_{best-1}^t+X_{best-2}^t))\newline+(2rand-1)(X_{best}^t-X_i(new))\tag{7} Xi(mut)=Xi(new)+2(1tmaxt)(2rand1)(2Xbestt(Xbest1t+Xbest2t))+(2rand1)(XbesttXi(new))(7)其中, r a n d rand rand ( 0 , 1 ) (0,1) (0,1)间的随机数。
利用式(8)和式(9)分别更新下一代个体 X i ( t + 1 ) X_i(t+1) Xi(t+1)的位置向量和猎物的位置 X p r e y X_{prey} Xprey X i ( t + 1 ) = { X i ( m u t ) f ( X i ( m u t ) ) < f ( X i ( n e w ) ) X i ( n e w ) f ( X i ( m u t ) ) ≥ f ( X i ( n e w ) ) (8) X_i(t+1)=\begin{dcases}X_i(mut)\quad f(X_i(mut))<f(X_i(new))\\X_i(new)\quad f(X_i(mut))\geq f(X_i(new))\end{dcases}\tag{8} Xi(t+1)={Xi(mut)f(Xi(mut))<f(Xi(new))Xi(new)f(Xi(mut))f(Xi(new))(8) X p r e y = { X i ( m u t ) f ( X i ( m u t ) ) < f ( X p r e y ) X i ( n e w ) f ( X i ( n e w ) ) < f ( X p r e y ) (9) X_{prey}=\begin{dcases}X_i(mut)\quad f(X_i(mut))<f(X_{prey})\\X_i(new)\quad f(X_i(new))<f(X_{prey})\end{dcases}\tag{9} Xprey={Xi(mut)f(Xi(mut))<f(Xprey)Xi(new)f(Xi(new))<f(Xprey)(9)

3、LHHO算法伪代码

提出的基于领导者变异选择的哈里斯鹰优化算法(LHHO)的伪代码如图2所示。
在这里插入图片描述

图2 LHHO算法伪代码

二、仿真实验与结果分析

将LHHO与HHO进行对比,实验设置种群规模为30,最大迭代次数为500,每个算法独立运行30次,以文献[1]中F3、F4(100维/单峰函数)、F11、F12(100维/多峰函数)、F21、F22(4维、4维/固定维度多峰函数)为例,结果显示如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

函数:F3
LHHO:最差值: 4.8138e-81, 最优值: 3.634e-123, 平均值: 1.6746e-82, 标准差: 8.7834e-82, 秩和检验: 1
HHO:最差值: 3.8354e-56, 最优值: 1.9134e-92, 平均值: 1.2785e-57, 标准差: 7.0025e-57, 秩和检验: 6.722e-10
函数:F4
LHHO:最差值: 8.257e-71, 最优值: 1.258e-83, 平均值: 3.1148e-72, 标准差: 1.506e-71, 秩和检验: 1
HHO:最差值: 4.0747e-48, 最优值: 4.2562e-57, 平均值: 2.3363e-49, 标准差: 7.9306e-49, 秩和检验: 3.0199e-11
函数:F11
LHHO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
HHO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
函数:F12
LHHO:最差值: 2.9001e-06, 最优值: 2.5288e-10, 平均值: 5.3315e-07, 标准差: 7.811e-07, 秩和检验: 1
HHO:最差值: 2.2619e-05, 最优值: 1.0018e-09, 平均值: 3.9363e-06, 标准差: 5.4442e-06, 秩和检验: 0.00076973
函数:F21
LHHO:最差值: -5.0552, 最优值: -10.1532, 平均值: -9.1332, 标准差: 2.0739, 秩和检验: 1
HHO:最差值: -5.055, 最优值: -10.1486, 平均值: -5.2249, 标准差: 0.92994, 秩和检验: 1.4643e-10
函数:F22
LHHO:最差值: -5.0876, 最优值: -10.4029, 平均值: -9.871, 标准差: 1.6217, 秩和检验: 1
HHO:最差值: -5.0875, 最优值: -5.0877, 平均值: -5.0876, 标准差: 4.57e-05, 秩和检验: 4.9752e-11

实验结果表明:LHHO的性能优于HHO。

三、参考文献

[1] Naik, M.K., Panda, R., Wunnava, A. et al. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding[J]. Multimedia Tools and Applications, 2021, 80: 35543-35583.

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值