一、理论基础
1、灰狼优化算法
请参考这里。
2、阿奎拉探索方法的灰狼优化算法
(1)阿奎拉探索方法
请参考这里。
(2)AGWO算法
首先,由于阿奎拉在第二个探索阶段已经找到了猎物,所以它的轨迹受到猎物的限制,这与灰狼包围猎物的方式类似。为了使算法更具探索性,将其更新为:
X
2
→
(
t
+
1
)
=
X
b
e
s
t
→
(
t
)
×
Levy
(
D
)
(1)
\overrightarrow{X_2}(t+1)=\overrightarrow{X_{best}}(t)\times\text{Levy}(D)\tag{1}
X2(t+1)=Xbest(t)×Levy(D)(1)其次,
a
→
\overrightarrow a
a的值线性减小,
A
→
\overrightarrow A
A的值随
a
→
\overrightarrow a
a的变化而变化。当
∣
A
∣
<
1
|A|<1
∣A∣<1时,狼会接近猎物,即探索,所以将
A
→
\overrightarrow A
A的值设为在区间
[
0
,
1
]
[0,1]
[0,1]内不断减小的值。此外,非线性参数控制是防止迭代优化过程中过早收敛的有效方法。因此使用下式更新
a
→
\overrightarrow a
a:
a
→
=
cos
(
π
2
∗
(
i
I
)
4
)
(2)
\overrightarrow a=\cos\left(\frac\pi2*\left(\frac iI\right)^4\right)\tag{2}
a=cos(2π∗(Ii)4)(2)提出的基于阿奎拉探索方法的灰狼优化算法(AGWO)的执行流程如图1所示。
二、仿真实验与结果分析
将AGWO与GWO、PSO、ChOA、MPA和SSA进行对比,以文献[1]中表2~表4的F1、F2、F3(单峰函数/30维)、F9、F10、F11(多峰函数/30维)、F18、F19、F20(固定维度多峰函数/2维、3维、6维)为例,实验设置种群规模为30,最大迭代次数为500,每种算法独立运算30次,结果显示如下:
函数:F1
AGWO:最差值: 7.0652e-160, 最优值: 6.5113e-167, 平均值: 2.5393e-161, 标准差: 1.2877e-160, 秩和检验: 1
GWO:最差值: 4.0608e-32, 最优值: 8.2959e-35, 平均值: 3.6048e-33, 标准差: 8.3012e-33, 秩和检验: 3.0199e-11
PSO:最差值: 58.0078, 最优值: 11.5343, 平均值: 29.6618, 标准差: 13.0493, 秩和检验: 3.0199e-11
ChOA:最差值: 4.6724e-07, 最优值: 1.085e-13, 平均值: 5.2581e-08, 标准差: 1.1627e-07, 秩和检验: 3.0199e-11
MPA:最差值: 1.6118e-22, 最优值: 8.1872e-26, 平均值: 4.0377e-23, 标准差: 4.5541e-23, 秩和检验: 3.0199e-11
SSA:最差值: 3.9828e-08, 最优值: 1.2272e-08, 平均值: 1.9846e-08, 标准差: 5.9862e-09, 秩和检验: 3.0199e-11
函数:F2
AGWO:最差值: 2.7939e-89, 最优值: 1.1564e-93, 平均值: 1.3202e-90, 标准差: 5.107e-90, 秩和检验: 1
GWO:最差值: 1.4572e-19, 最优值: 1.0005e-20, 平均值: 5.5382e-20, 标准差: 3.0894e-20, 秩和检验: 3.0199e-11
PSO:最差值: 9.5465, 最优值: 2.096, 平均值: 5.5338, 标准差: 1.9581, 秩和检验: 3.0199e-11
ChOA:最差值: 5.0414e-06, 最优值: 4.6812e-08, 平均值: 1.3595e-06, 标准差: 1.3143e-06, 秩和检验: 3.0199e-11
MPA:最差值: 6.8687e-13, 最优值: 4.4481e-15, 平均值: 2.1516e-13, 标准差: 1.7627e-13, 秩和检验: 3.0199e-11
SSA:最差值: 4.5701, 最优值: 0.0070734, 平均值: 0.74974, 标准差: 0.92585, 秩和检验: 3.0199e-11
函数:F3
AGWO:最差值: 2.3194e-83, 最优值: 1.7434e-99, 平均值: 7.917e-85, 标准差: 4.2323e-84, 秩和检验: 1
GWO:最差值: 4.7137e-07, 最优值: 7.3592e-11, 平均值: 4.1866e-08, 标准差: 1.0043e-07, 秩和检验: 3.0199e-11
PSO:最差值: 2705.095, 最优值: 351.0846, 平均值: 1018.3771, 标准差: 484.6595, 秩和检验: 3.0199e-11
ChOA:最差值: 34.9022, 最优值: 0.10081, 平均值: 5.2962, 标准差: 7.5347, 秩和检验: 3.0199e-11
MPA:最差值: 0.00038324, 最优值: 1.0118e-07, 平均值: 6.8958e-05, 标准差: 9.5754e-05, 秩和检验: 3.0199e-11
SSA:最差值: 1770.4114, 最优值: 117.798, 平均值: 673.2442, 标准差: 392.9525, 秩和检验: 3.0199e-11
函数:F9
AGWO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
GWO:最差值: 16.1263, 最优值: 5.6843e-14, 平均值: 2.3871, 标准差: 4.4095, 秩和检验: 9.1376e-13
PSO:最差值: 89.7165, 最优值: 28.526, 平均值: 50.6486, 标准差: 13.9615, 秩和检验: 1.2118e-12
ChOA:最差值: 67.8363, 最优值: 5.7942e-05, 平均值: 10.235, 标准差: 14.762, 秩和检验: 1.2118e-12
MPA:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
SSA:最差值: 78.6016, 最优值: 16.9143, 平均值: 43.9108, 标准差: 16.3085, 秩和检验: 1.2118e-12
函数:F10
AGWO:最差值: 7.9936e-15, 最优值: 4.4409e-15, 平均值: 4.5593e-15, 标准差: 6.4863e-16, 秩和检验: 1
GWO:最差值: 5.0626e-14, 最优值: 2.931e-14, 平均值: 4.3047e-14, 标准差: 4.9133e-15, 秩和检验: 1.2197e-12
PSO:最差值: 6.2995, 最优值: 2.8646, 平均值: 4.4599, 标准差: 0.65785, 秩和检验: 1.7203e-12
ChOA:最差值: 19.9637, 最优值: 19.9591, 平均值: 19.962, 标准差: 0.0012876, 秩和检验: 1.7203e-12
MPA:最差值: 5.5751e-12, 最优值: 7.5495e-14, 平均值: 1.6804e-12, 标准差: 1.1174e-12, 秩和检验: 1.7203e-12
SSA:最差值: 4.3409, 最优值: 2.3112e-05, 平均值: 2.0534, 标准差: 1.1232, 秩和检验: 1.7203e-12
函数:F11
AGWO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
GWO:最差值: 0.026139, 最优值: 0, 平均值: 0.0030277, 标准差: 0.0073486, 秩和检验: 0.0055843
PSO:最差值: 1.4753, 最优值: 1.0647, 平均值: 1.2504, 标准差: 0.097534, 秩和检验: 1.2118e-12
ChOA:最差值: 0.084005, 最优值: 8.645e-12, 平均值: 0.012505, 标准差: 0.022518, 秩和检验: 1.2118e-12
MPA:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
SSA:最差值: 0.032902, 最优值: 1.3594e-06, 平均值: 0.0080494, 标准差: 0.0093868, 秩和检验: 1.2118e-12
函数:F18
AGWO:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 6.5829e-07, 秩和检验: 1
GWO:最差值: 3.0001, 最优值: 3, 平均值: 3, 标准差: 1.984e-05, 秩和检验: 3.0811e-08
PSO:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 8.92e-16, 秩和检验: 1.923e-11
ChOA:最差值: 3.0004, 最优值: 3, 平均值: 3.0001, 标准差: 9.4321e-05, 秩和检验: 4.5043e-11
MPA:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 2.3758e-15, 秩和检验: 1.9482e-11
SSA:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 1.4289e-13, 秩和检验: 3.018e-11
函数:F19
AGWO:最差值: -3.8549, 最优值: -3.8628, 平均值: -3.8614, 标准差: 0.0024155, 秩和检验: 1
GWO:最差值: -3.8549, 最优值: -3.8628, 平均值: -3.8621, 标准差: 0.0019931, 秩和检验: 0.0011143
PSO:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 2.6962e-15, 秩和检验: 1.7203e-12
ChOA:最差值: -3.8529, 最优值: -3.8592, 平均值: -3.8548, 标准差: 0.0010548, 秩和检验: 1.3289e-10
MPA:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 2.3557e-15, 秩和检验: 6.3188e-12
SSA:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 2.5879e-13, 秩和检验: 3.018e-11
函数:F20
AGWO:最差值: -3.1334, 最优值: -3.3219, 平均值: -3.2299, 标准差: 0.069187, 秩和检验: 1
GWO:最差值: -3.1327, 最优值: -3.322, 平均值: -3.2432, 标准差: 0.067826, 秩和检验: 0.0055699
PSO:最差值: -3.1996, 最优值: -3.322, 平均值: -3.2585, 标准差: 0.060444, 秩和检验: 1.9543e-05
ChOA:最差值: -1.9192, 最优值: -3.2592, 平均值: -2.7091, 标准差: 0.40464, 秩和检验: 3.4742e-10
MPA:最差值: -3.322, 最优值: -3.322, 平均值: -3.322, 标准差: 4.6299e-12, 秩和检验: 3.0199e-11
SSA:最差值: -3.1699, 最优值: -3.322, 平均值: -3.2124, 标准差: 0.044486, 秩和检验: 0.81875
实验结果表明:AGWO算法具有良好的性能。
三、参考文献
[1] Chi Ma, Haisong Huang, Qingsong Fan, et al. Grey wolf optimizer based on Aquila exploration method[J]. Expert Systems With Applications, 2022, 205: 117629.