随着OpenAI的ChatGPT等生成式AI模型的快速发展,自然语言处理领域取得了革命性的进展。这些系统能够生成连贯且符合上下文的回应。然而,即使是最先进的模型在处理特定领域的查询或提供高度准确的信息时仍面临局限性。这经常导致"幻觉"问题 - 模型产生不准确或虚构的细节。
检索增强生成(RAG)是一个创新框架,旨在弥补这一差距。通过无缝集成外部数据源,RAG使生成模型能够检索实时、专业的信息,显著提高其准确性和可靠性。
本文将深入探讨RAG的运作机制、架构设计,以及传统生成模型的局限性。同时还将重点介绍实践应用、高级技术和评估方法,展示RAG如何改变AI与专业数据的交互方式。
1. RAG简介
检索增强生成(RAG)是一个先进的框架,通过集成实时检索的外部数据来增强生成式AI模型的能力。虽然生成模型擅长产生连贯、类人的文本,但在提供准确、及时或特定领域的信息时可能会出现偏差。这正是RAG发挥作用的地方,确保响应不仅富有创意,而且基于可靠和相关的数据源。
RAG通过将生成模型与检索机制(通常由向量数据库或搜索系统提供支持)相连接来运作。当收到查询时,检索组件会搜索大量外部数据集以获取相关信息。然后生成模型对这些数据进行综合,产生既准确又具有上下文洞察力的输出。
通过解决幻觉和有限领域知识等关键挑战,RAG释放了生成模型在专业领域发挥作用的潜力。其应用范围涵盖多个行业,从提供精确答案的自动化客户支持到使研究人员能够按需访问精选知识。RAG代表着让AI系统在现实场景中变得更智能、更可信、更有用的重要一步。
2. RAG架构
清晰理解RAG架构对于充分发挥其潜力和优势至关重要。在其核心,该框架建立在两个主要组件之上:检索器和生成器,它们在信息处理流程中无缝协作。
主要组成部分:
检索(Retrieval)
- RAG推理阶段始于检索,根据用户查询从外部知识源获取相关数据
- 基础RAG设置中常用相似度搜索,将查询和外部数据嵌入到相同的向量空间以识别最匹配的内容
- 检索器使用稀疏检索和密集检索等方法获取文档
- 稀疏检索(如TF-IDF或BM25)依赖精确词匹配,但难以处理同义词和改写
- 密集检索利用BERT或RoBERTa等transformer模型创建语义向量表示,实现更准确和细腻的匹配
增强(Augmentation)
- 从外部源检索到最相关数据点后,增强过程将这些信息嵌入预定义的提示模板中
生成(Generation)
- 在生成阶段,模型使用增强后的提示,结合其内部语言理解能力和检索的外部数据,创建连贯且符合上下文的响应
- 虽然增强集成了外部事实,但生成将这些丰富的信息转化为自然、类人的文本,以满足用户查询需求
3. RAG工作流程
RAG的完整工作流程包含以下关键步骤:
文档加载
- 第一步涉及数据准备,包括从存储中加载文档、提取、解析、清理和格式化文本以进行文档分割
- 文本数据可能来自多种格式:纯文本、PDF、Word文档、CSV、JSON、HTML、Markdown或程序代码
- 准备这些不同来源的数据通常需要通过提取、解析和清理将其转换为纯文本
文档分割
- 文档被分割成更小的可管理片段,这对于处理大文档和遵守LLM的token限制(如GPT-3的2048个token)至关重要
- 分割策略包括固定大小或内容感知分块,具体方法取决于数据的结构和需求
- 需要仔细考虑语义以避免不当分割句子,这会影响后续步骤如问答
- 大多数文档分割算法使用块大小和重叠度,其中块大小由字符、单词或token数量决定,重叠确保通过在相邻块之间共享文本来保持语义连续性
文本嵌入
- 文本块被转换为向量嵌入,以便于比较语义相似度
- 向量嵌入将复杂数据(如文本)映射到数学空间,使相似数据点聚集在一起
- 这个过程捕获文本的语义含义,使得意思相似但措辞不同的句子映射到相近的点
向量存储
- 文档分割和转换为向量嵌入后,存储在专门的向量数据库中
- 向量存储支持高效的相似向量搜索,这对RAG模型的执行至关重要
- 向量存储的选择取决于数据规模和可用计算资源等因素
主流向量数据库包括:
- FAISS: Facebook AI开发,高效管理大规模高维向量
- Chroma: 开源内存向量数据库,专为LLM应用设计
- Weaviate: 可自托管或完全托管的开源向量数据库
- Pinecone: 云端托管向量数据库,简化大规模ML应用开发部署
文档检索
- 检索过程始于接收查询并使用相同的嵌入模型将其转换为向量
- 通过比较查询向量与存储的块向量来返回相关文档块
- 可使用相似度搜索(基于余弦相似度)和基于阈值的检索等方法
- LLM辅助检索适用于同时涉及内容和元数据过滤的查询
答案生成
- 相关文档块与用户查询组合,为LLM生成上下文和提示
- 最简单的方法是"Stuff"方法,将所有块输入同一上下文窗口
- 对于大量文档和复杂查询,使用Map-reduce、Refine和Map-rerank等替代方法
- Map-reduce分别向LLM发送文档然后合并响应
- Refine迭代更新提示以优化答案
- Map-rerank根据相关性对文档排序,适合有多个有说服力的答案的情况
4. RAG与微调对比
RAG和微调是扩展LLM能力的两种关键方法,各自适用于不同场景:
微调
- 在特定领域数据上重新训练LLM以执行专门任务
- 适合静态、狭窄用例,如需要特定语气或风格的品牌传播或创意写作
- 成本高昂、耗时且不适合动态、频繁更新的数据
RAG
- 通过动态检索外部数据增强LLM,无需修改模型权重
- 成本效益高,适合实时、数据驱动的环境
- 特别适合法律、金融或客户服务等应用
- 能够处理大型非结构化内部文档库
对比总结
- 微调擅长创建细腻、一致的输出
- RAG通过利用外部知识库提供最新、准确的信息
- 在实践中,RAG通常是需要实时、适应性响应的应用的首选
5. RAG类型
RAG有多种实现方式,每种都针对特定用例和目标优化:
原生RAG
- 检索和生成组件紧密集成在同一架构中
- 优化组件间交互,实现更快处理和更好的上下文相关性
- 通常使用内存处理或高度优化的本地数据库
- 减少延迟和资源开销
检索和重排序RAG
- 通过改进检索过程提高准确性和相关性
- 先基于语义相似度检索初始文档集
- 使用重排序模型根据上下文相关性重新排序
- 优先考虑最相关文档,提升响应质量
多模态RAG
- 整合文本、图像、音频或视频等多种数据模态
- 特别适用于电商、医学影像和多媒体内容分析等领域
- 能够检索和生成集成多种形式数据的响应
图RAG
- 利用图结构建模和检索基于实体关系的信息
- 节点表示实体,边捕获关系
- 适用于科研、社交网络和知识管理等领域
混合RAG
- 结合多种检索技术(如密集检索和稀疏检索)
- 平衡精确度和召回率
- 适用于异构数据环境
代理RAG(路由)
- 使用决策层动态路由查询到合适的处理模块
- 分析查询特征选择最优处理路径
- 提高不同应用场景的效率和准确性
代理RAG(多代理)
- 多个专门代理协作处理不同任务
- 每个代理负责特定领域的检索或生成
- 适用于复杂的多领域查询
6. RAG应用场景
RAG在各行业有广泛应用:
客户支持与服务
- 智能聊天机器人回答复杂查询
- 检索产品手册、知识库和公司政策文档
- 确保客户获得准确、及时的信息
法律文档分析
- 解析、检索和生成法律文档摘要
- 支持法律研究和合同起草
- 确保合规性
金融分析
- 分析财报、市场趋势和监管文件
- 生成财务洞察和报告
- 实时回答市场表现相关问题
医疗保健
- 检索和综合医学文献、病历和治疗指南
- 辅助诊断支持和药物研发
- 提供个性化治疗建议
教育与在线学习
- 个性化教育工具
- 生成定制学习指南
- 提供上下文解释和动态内容
电商零售
- 改进产品搜索和推荐
- 提供个性化购物助手
- 基于用户偏好推荐产品
智能虚拟助手
- 提供准确、相关的响应
- 处理需要外部知识的查询
- 实时更新信息
结语
RAG技术通过将检索能力与生成模型相结合,显著提升了AI系统处理专业领域信息的能力。它不仅解决了传统生成模型的局限性,还为各行各业提供了更智能、更可靠的AI解决方案。随着技术的不断发展,我们期待看到RAG在更多场景中的创新应用。