【深度学习】Squeeze-and-Excitation (SE) 模块优势解读

Squeeze-and-Excitation (SE) 模块是一种用于深度学习的机制,旨在增强模型对特征通道的敏感性。它包括压缩(全局平均池化)和激励(通过全连接层对通道重要性进行建模)两个步骤。SE模块通过学习特征通道的重要性,对原始特征图进行重新加权,提高了网络性能,尤其适用于资源有限的环境。该模块可以轻松插入现有网络结构,如Inception和ResNet。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【深度学习】Squeeze-and-Excitation (SE) 模块优势解读

文章目录
1 概念辨析—下采样和上采样
2 Squeeze-and-Excitation (SE)
3 压缩(Squeeze)
4 激励(Excitation)
5 scale操作
6 相乘特征融合
7 SE模块的实现
8 优势

1 概念辨析—下采样和上采样

概念

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值