【深度学习】神经网络结构搜索(NAS)与多模态

本文介绍了神经网络结构搜索(NAS)在自动机器学习中的重要性,旨在自动获取高性能的神经网络模型。文章探讨了经典NAS方法,包括搜索空间、搜索策略和性能评估,以及如何通过强化学习和进化算法优化搜索。此外,还讨论了多模态表示学习,强调了多模态数据在不同领域的应用和挑战。最后,分享了在线GPU资源,如Colab Pro,对于加速深度学习实验的便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【深度学习】神经网络结构搜索(NAS)与多模态

在这里插入图片描述

文章目录

1 概述
2 经典的NAS方法
	2.1 搜索空间
	2.2 搜索策略
	2.3 性能评估
3 多模态
4 多模态表示学习 Multimodal Representation

1 概述

神经网络结构搜索(Neural Architecture Search,NAS)是自动机器学习(Auto-ML)领域热点之一,通过设计经济高效的搜索方法,**自动获取泛化能力强,硬件要求友好的神经网络,大量的解放研究员的创造力。**在现今深度学习的浪潮中,“炼丹师”作为深度学习工作者自嘲的称号使得NAS注定将成为新的研究热点。

在这里插入图片描述

本文作者为东北大学自然语言处理实验室 2018 级研究生胡驰,他的研究方向包括神经网络结构搜索、自然语言处理。雷锋网 AI 科技评论经作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值