【深度学习】神经网络结构搜索(NAS)与多模态
文章目录
1 概述
2 经典的NAS方法
2.1 搜索空间
2.2 搜索策略
2.3 性能评估
3 多模态
4 多模态表示学习 Multimodal Representation
1 概述
神经网络结构搜索(Neural Architecture Search,NAS)是自动机器学习(Auto-ML)领域热点之一,通过设计经济高效的搜索方法,**自动获取泛化能力强,硬件要求友好的神经网络,大量的解放研究员的创造力。**在现今深度学习的浪潮中,“炼丹师”作为深度学习工作者自嘲的称号使得NAS注定将成为新的研究热点。
本文作者为东北大学自然语言处理实验室 2018 级研究生胡驰,他的研究方向包括神经网络结构搜索、自然语言处理。雷锋网 AI 科技评论经作