Copula理论学习(四)--Frechet-Hoeffding Bounds

任何copula C 都是逐点遵循下界为lower Frechet-Hoeffding Bound W, 上届为upper Frechet-Hoeffding Bound M。W和M的公式分别为:
在这里插入图片描述
当d=2时,W是一个copula。而当d>=2时,M是一个copula。
定理2.2.1 Frechet-Hoeffding Bounds
对于任何d维的copula C,
在这里插入图片描述
令UU(0,1),很容易证明,(U,1-U)W,(U,…, U)~M
(U,1-U)的相关性为完全负相关,这种完全的负相关,无法拓展到3维及以上。如果两个随机变量是完全负相关的,那么他们无法同时与第三个变量完全负相关。换句话说,W对于3维及以上的变量,不是一个copula,即a=(1/2,1/2,…,1/2)和b(1,…,1)表明:

在这里插入图片描述<0
(U,… U)的相关性是完全正相关。

例2.2.2 Frechet-Hoeffding Bounds

set.seed(1980)
U<-runif(100)#产生服从均匀分布的100个随机数
plot(cbind(U,1-U),xlab=quote(U[1]),ylab=quote(U[2]))#cbind是combind objects by columns
plot(cbind(U,U),xlab=quote(U[1]),ylab=quote(U[2]))

在这里插入图片描述

u<-seq(0,1,length.out=40)#subdivision points in each dimension
u12<-expand.grid("u[1]"=u,"u[2]"=u)#build a grid
W<-pmax(u12[,1]+u12[,2]-1,0)#value of W on grid
M<-pmin(u12[,1],u12[,2])#value of M on grid
val.W<-cbind(u12,"W(u[1],u[2])"=W)#append grid
val.M<-cbind(u12,"M(u[1],u[2])"=M)#append grid
wireframe2(val.W)
wireframe2(val.M)
contourplot2(val.W,xlim=0:1,ylim=0:1)
contourplot2(val.M,xlim=0:1,ylim=0:1)

在这里插入图片描述
在例2.14中,我们可以验证得到,当两变量Frank Copula的参数越大,散点图的分布越靠近右侧,可参考图2.4和图2.7,这就表明,Frank copula函数族在Copula W 和M之间交叉。
通过图2.7可以得到,W和M均不是完全连续的。像W和M这样的copula, 将所有的概率团均集中到一些测量值为0的范围,被称为单一singular. 同样存在Copula C 不是singular,却包含singular的成分,即,将(0,1)范围内的一部分概率分布为0值的范围的copulas。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值