【论文阅读】Latent Consistency Models (LCMs)、LCM-LoRa

Introduction

  • 提出 Latent Consistency Models (LCMs),图像生成速度更快、质量更好.
  • 提出一种简单高效的 one-stage guided consistency distillation 方法,用极少的采样步数蒸馏 Stable Diffusion,进一步提出 skipping-step 技术加快收敛过程.
  • 介绍针对 LCMs 的微调方法.

Preliminaries

Diffusion Models

使用 empirical PF-ODE 表示模型的逆扩散过程:

d x t d t = f ( t ) x t + g 2 ( t ) 2 σ t ϵ θ ( x t , t ) \large \frac{\mathrm{d}x_t}{\mathrm{d}t}=f(t)x_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(x_t,t) dtdxt=f(t)xt+2σtg2(t)ϵθ(xt,t)

对于 class-conditioned 扩散模型,Classifier-Free Guidance (CFG) 有效地提高了生成样本的质量,用 ω \omega ω表示 CFG 系数,原始的噪声预测模型可以被替换为:

ϵ θ ^ ( z t , ω , c , t ) = ( 1 + ω ) ϵ θ ( z t , c , t ) − ω ϵ θ ( z t , ∅ , t ) \large\hat{\epsilon_{\theta}}(z_t,\omega,c,t)=(1+\omega)\epsilon_{\theta}(z_t,c,t)-\omega\epsilon_{\theta}(z_t,\varnothing,t) ϵθ^(zt,ω,c,t)=(1+ω)ϵθ(zt,c,t)ωϵθ(zt,,t)

Consistency Models

F θ ( x , t ) F_{\theta}(\mathrm{x}, t) Fθ(x,t)表示任意形式的神经网络,使用 sikp connection 可以将模型表示为:

f θ ( x , t ) = c s k i p ( t ) x + c o u t ( t ) F θ ( x , t ) \large f_{\theta}(\mathrm{x}, t)=c_{skip}(t)\mathrm{x}+c_{out}(t)F_{\theta}(\mathrm{x},t) fθ(x,t)=cskip(t)x+cout(t)Fθ(x,t)

其中边界条件为 c s k i p ( ϵ ) = 1 c_{skip}(\epsilon)=1 cskip(ϵ)=1 c o u t ( ϵ ) = 0 c_{out}(\epsilon)=0 cout(ϵ)=0.
损失函数为:

L C D N ( θ , θ − ; ϕ ) = E [ λ ( t n ) d ( f θ ( x t n + 1 , t n + 1 ) , f θ − ( x ^ t n ϕ , t n ) ] \large \mathcal{L}_{CD}^{N}(\theta, \theta^-;\phi)=\mathbb{E}\left[\lambda(t_n)d(f_{\theta}(\mathrm{x}_{t_{n+1}},t_{n+1}),f_{\theta^-}(\hat{\mathrm{x}}_{t_n}^{\phi}, t_n) \right] LCDN(θ,θ;ϕ)=E[λ(tn)d(fθ(xtn+1,tn+1),fθ(x^tnϕ,tn)]

θ − \theta^- θ使用 EMA 更新,计算公式如下:

θ − ← s t o p g a r d ( μ θ − + ( 1 − μ ) θ ) \large \theta^- \leftarrow \mathrm{stopgard}(\mu\theta^-+(1-\mu)\theta) θstopgard(μθ+(1μ)θ)

x ^ t n ϕ \hat{\mathrm{x}}_{t_n}^{\phi} x^tnϕ是从 x t n + 1 \mathrm{x}_{t_{n+1}} xtn+1 x t n \mathrm{x}_{t_{n}} xtn的估计,计算公式如下:

x ^ t n ϕ = x t n + 1 + ( t n − t n + 1 ) Φ ( x t n + 1 , t n + 1 ; ϕ ) \large \hat{\mathrm{x}}_{t_n}^{\phi}=\mathrm{x}_{t_{n+1}} + (t_n-t_{n+1})\Phi(\mathrm{x}_{t_{n+1}}, t_{n+1};\phi) x^tnϕ=xtn+1+(tntn+1)Φ(xtn+1,tn+1;ϕ)

Latent Consistency Models

Consistency Distillation in the Latent Space

针对类似 Stable Diffusion的隐空间上的条件扩散模型,其 PF- ODE 逆过程可以表示为:

d z t d t = f ( t ) z t + g 2 ( t ) 2 σ t ϵ θ ( z t , c , t ) \large \frac{\mathrm{d}z_t}{\mathrm{d}t}=f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t) dtdzt=f(t)zt+2σtg2(t)ϵθ(zt,c,t)

其中 z t z_t zt是图像隐向量, c c c是给定的条件. 类似CM中的做法,引入 f θ : ( z t , c , t ) ↦ z 0 f_{\theta}:(z_t,c,t)\mapsto z_0 fθ:(zt,c,t)z0,将其参数化为:

f θ ( z , c , t ) = c s k i p ( t ) z + c o u t ( t ) ( z − σ t ϵ ^ θ ( z , c , t ) α t ) \large f_{\theta}(z,c,t)=c_{skip}(t)z+c_{out}(t)\left(\frac{z-\sigma_t\hat{\epsilon}_{\theta}(z,c,t)}{\alpha_{t}} \right) fθ(z,c,t)=cskip(t)z+cout(t)(αtzσtϵ^θ(z,c,t))

具体的参数化形式由被蒸馏的扩散模型决定.
损失函数表示为:

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , c , t n + 1 ) , f θ − ( z ^ t n Ψ , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},c,t_n) \right] LCD(θ,θ;Ψ)=Ez,c,n[d(fθ(ztn+1,c,tn+1),fθ(z^tnΨ,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ z t n + 1 z_{t_{n+1}} ztn+1 z t n z_{t_{n}} ztn的估计,计算方法如下:

z ^ t n Ψ − z t n + 1 = ∫ t n + 1 t n ( f ( t ) z t + g 2 ( t ) 2 σ t ϵ θ ( z t , c , t ) ) d t ≈ Ψ ( z t n + 1 , t n + 1 , t n , c ) \large \hat{z}_{t_n}^{\Psi}-z_{t_{n+1}}=\int_{t_{n+1}}^{t_n}\left(f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t)\right)\mathrm{d}t\approx\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c) z^tnΨztn+1=tn+1tn(f(t)zt+2σtg2(t)ϵθ(zt,c,t))dtΨ(ztn+1,tn+1,tn,c)

One-Stage Guided Distillation by Solving Augmented PF-ODE

使用CFG,损失函数可以表示为:

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , ω , c , t n + 1 ) , f θ − ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},\omega,c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD(θ,θ;Ψ)=Ez,c,n[d(fθ(ztn+1,ω,c,tn+1),fθ(z^tnΨ,ω,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ的计算方法更新为

z ^ t n Ψ − z t n + 1 ≈ ( 1 + ω ) Ψ ( z t n + 1 , t n + 1 , t n , c ) − Ψ ( z t n + 1 , t n + 1 , t n , ∅ ) \large \hat{z}_{t_n}^{\Psi}-z_{t_{n+1}}\approx(1+\omega)\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c)-\Psi(z_{t_{n+1}}, t_{n+1}, t_n, \varnothing) z^tnΨztn+1(1+ω)Ψ(ztn+1,tn+1,tn,c)Ψ(ztn+1,tn+1,tn,)

Accelerating Distillation with Skipping Time Steps

扩散模型例如Stable Diffusion的总时间步长有 1000 1000 1000步,LCM在训练的采样需要覆盖这 1000 1000 1000步,既然相邻时间步之间的差值小,那么 f θ ( z t n + 1 , c , t n + 1 ) f_{\theta}(z_{t_{n+1}},c,t_{n+1}) fθ(ztn+1,c,tn+1) f θ ( z t n , c , t n ) f_{\theta}(z_{t_{n}},c,t_{n}) fθ(ztn,c,tn)之间的差距也小,这导致计算出来的损失小、收敛慢.

作者介绍了skipping-step 方法,原来度量时间步 t n + 1 t_{n+1} tn+1 t n t_n tn间的差距,改为度量 t n + k t_{n+k} tn+k t n t_n tn间的差距. 至此,LCM训练的损失函数为

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + k , ω , c , t n + k ) , f θ − ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+k}},\omega,c,t_{n+k}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD(θ,θ;Ψ)=Ez,c,n[d(fθ(ztn+k,ω,c,tn+k),fθ(z^tnΨ,ω,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ Ψ ( ⋅ , ⋅ , ⋅ , ⋅ ) \Psi(·,·,·,·) Ψ(⋅,⋅,⋅,⋅)的计算方法对应跨 k k k步,作者分别使用了DDIMDPM-SolverDPM-Solver++ 作为 PF-ODE solver,以DDIM为例,其对应的 Ψ ( ⋅ , ⋅ , ⋅ , ⋅ ) \Psi(·,·,·,·) Ψ(⋅,⋅,⋅,⋅)计算方法为

Ψ ( z t n + k , t n + k , t n , c ) = α t n α t n + k z t n + k − σ t n ( σ t n + k α t n α t n + k σ t n − 1 ) ϵ ^ θ ( z t n + k , c , t n + k ) − z t n + k \large \Psi(z_{t_{n+k}}, t_{n+k}, t_n, c)=\frac{\alpha_{t_n}}{\alpha_{t_{n+k}}}z_{t_{n+k}}-\sigma_{t_n}\left(\frac{\sigma_{t_{n+k}}\alpha_{t_n}}{\alpha_{t_{n+k}}\sigma_{t_n}}-1\right)\hat{\epsilon}_{\theta}(z_{t_{n+k}},c,t_{n+k})-z_{t_{n+k}} Ψ(ztn+k,tn+k,tn,c)=αtn+kαtnztn+kσtn(αtn+kσtnσtn+kαtn1)ϵ^θ(ztn+k,c,tn+k)ztn+k

再加入CFGskipping-step之后,LCM的训练过程用如下算法所示:
在这里插入图片描述

多步采样算法如下:
[图片]

Latent Consistency Fine-tuing for Customized Dataset

全量微调算法:
[图片]

Experiment

测试数据集使用 LAION-Aesthetic-6+ 和 LAION-Aesthetic-6.5+,teacher model 是 Stable Diffusion-v2.1.

[图片]

LCM的推理步数在 1 1 1 4 4 4步的时候效果会比其他 baseline 方法好. 因为DPMDPM++算实践中很常用的 ODE Solver,正常使用时推理步数在 20 20 20以上. 所以综合速度和质量,LCM表现不错.

训练时间 32 A100 GPU Hours

LCM-LoRA

[图片]

原理:在原本的 Latent Diffusion Model (LDM) 中,可以使用 LoRa 训练一个额外结构附加到模型的 TextEncoder 和 Unet 中,做到模型的风格迁移. 即图中所示的 τ ′ \mathbb{\tau}' τ,它是原模型微调后额外结构的参数向量. LCM的 backbone 和被它蒸馏模型的 backbone 结构是一致的,所以LCD过程也可以视作对原模型的微调,所以也可以利用 LoRa,在初始化 student Unet 之后,整个蒸馏过程只训练 LoRa 引入的额外结构,也就是获得 τ L C M \mathbb{\tau}_{\mathrm{LCM}} τLCM. 理论上可以结合 τ ′ \mathbb{\tau}' τ,最终做到既能加速生成,又能风格迁移.

LCD过程仅微调 LoRa,收敛更快,训练消耗显著降低.

<think>好的,我现在要帮用户了解LCM-LoRA的相关信息,包括定义、用法和实现细节,还有模型下载安装配置的问题。首先,我需要整理用户提供的引用资料,看看里面有什么关键点。 根据引用内容,LCM-LoRA是结合了Latent Consistency ModelsLoRA技术的一种加速模块。它的主要作用是通过蒸馏过程减少扩散模型的推理步骤,同时保持生成质量。用户可能想知道它是如何工作的,为什么有效,以及具体怎么使用。 接下来,用户提到的下载安装配置部分,我需要查看引用中的信息。引用2提到支持多种模型如SDXL、SDV1-5和SSD-1B,安装前需要准备环境,比如安装diffusers库和PyTorch。引用4提到使用LoRA技术,可能涉及加载预训练的LoRA权重。 然后,实现细节部分,引用3和4提到LoRA通过低秩适应微调,将教师模型的知识蒸馏到适配层,这样可以在不同模型上灵活应用。可能用户想知道具体的训练过程或架构设计。 用户的问题可能还涉及如何结合其他LoRA模块,比如风格微调的,引用1提到可以线性组合参数,实现无需训练的风格加速生成。这部分需要详细说明使用方法。 需要注意用户可能需要步骤化的安装配置指南,比如安装依赖、加载模型、推理步骤。同时,要确保回答结构清晰,分点说明定义、特点、使用步骤、实现细节等。还要生成相关问题,可能涉及原理、比较其他方法、兼容性、优化等。 最后,检查是否需要区分系统级指令和用户可见层,确保格式正确,使用中文,LaTeX正确,引用标识自然添加。可能漏掉的部分需要确认,比如模型下载的具体链接或命令,但引用中没有给出,可能需要建议官方仓库或Hugging Face。</think>### LCM-LoRA 详细介绍 #### 一、定义与核心原理 LCM-LoRALatent Consistency Model LoRA)是一种基于**低秩适应(LoRA)**的扩散模型加速模块,通过**知识蒸馏**将扩散模型的推理步骤压缩至2-8步,同时保持生成质量[^3]。其核心思想是将一致性模型(Consistency Model)的蒸馏过程与LoRA技术结合,仅优化少量适配层参数,而非整个模型[^4]。 数学上,扩散模型的概率流ODE(PF-ODE)可表示为: $$ \frac{d\mathbf{x}_t}{dt} = f(\mathbf{x}_t, t) $$ LCM-LoRA通过训练适配层参数$\theta$,学习从教师扩散模型中蒸馏出的函数$f_\theta$,从而替代传统数值求解器。 #### 二、核心特点 1. **高效推理**:推理步骤从15-50步减少至2-8步,速度提升5-10倍[^2] 2. **参数轻量化**:仅需微调0.1%-1%的模型参数(LoRA层) 3. **兼容性**:支持与风格微调LoRA参数**线性叠加**,实现零训练多风格生成[^1] 4. **泛化能力**:适配SDXL、SDv1.5、SSD-1B等多种扩散模型[^4] #### 三、安装与配置 ```python # 环境准备(需PyTorch>=2.0) pip install diffusers transformers accelerate peft ``` ```python from diffusers import StableDiffusionXLPipeline import torch # 加载基础模型+LCM-LoRA pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") # 注入LCM-LoRA权重 pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") ``` #### 四、使用示例 ```python # 生成图像(4步推理) prompt = "A astronaut riding a horse on Mars" image = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=1.0 # LCM模式下需关闭CFG ).images[0] ``` #### 五、实现细节 1. **蒸馏过程**: - 使用L2损失函数对齐教师模型输出: $$ \mathcal{L} = \mathbb{E}[\|f_\theta(\mathbf{x}_t,t) - f_{\text{teacher}}(\mathbf{x}_t,t)\|^2] $$ - 冻结原始模型参数,仅优化LoRA层[^3] 2. **架构设计**: - 在UNet的交叉注意力层注入LoRA适配器 - 典型配置:rank=64,alpha=16[^4] 3. **混合推理**: ```python # 结合风格LoRA(需相同rank) pipe.load_lora_weights("path/to/style_lora", adapter_name="style") pipe.set_adapters(["lcm", "style"], weights=[1.0, 0.8]) ``` ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值