实数系的连续性、完备性和拓扑性质
确界存在定理:非空有上界数集必有上确界、非空有下界数集必有下确界。
单调有界数列收敛定理。
闭区间套定理。
有界数列必有收敛子列。
Cauchy收敛原理。
拓扑性质:开集、闭集、闭包、内点、边界点、极限点(聚点)、孤立点、完美集、稠密集。


紧集:任意开覆盖有有限子覆盖。Heine-Borel定理:紧集是有界闭集。
紧集的闭子集是紧的。
紧集套一定非空。
紧集的无穷子集必有极限点
确界存在定理:非空有上界数集必有上确界、非空有下界数集必有下确界。
单调有界数列收敛定理。
闭区间套定理。
有界数列必有收敛子列。
Cauchy收敛原理。
拓扑性质:开集、闭集、闭包、内点、边界点、极限点(聚点)、孤立点、完美集、稠密集。
紧集:任意开覆盖有有限子覆盖。Heine-Borel定理:紧集是有界闭集。
紧集的闭子集是紧的。
紧集套一定非空。
紧集的无穷子集必有极限点