连通性与紧致性

本文参考熊金城《拓扑学》第2版,仅梳理思路,具体证明请查阅原书。

微积分中连续函数的三个基本定理:

  1. 介值定理
  2. 极大值定理(最大最小值定理)
  3. 一致连续性定理

1. 连通空间

定义
X X X是一个拓扑空间。所谓 X X X的一个分割,是指 X X X的一对无交的非空开子集 U U U V V V,它们的并等于 X X X。如果 X X X的分割不存在,则称空间 X X X连通的。
等价定义
空间 X X X是连通的当且仅当 X X X中既开又闭的子集只有空集和 X X X本身。
事实上,若 A A A X X X中一个既开又闭的非空真子集,那么 U = A U=A U=A V = X − A V=X-A V=XA X X X的非空无交开集使得其并等于 X X X,从而它们构成了 X X X的一个分割。反之,如果 U U U V V V构成 X X X的一个分割,则 U U U便是 X X X的既开又闭的非空真子集。

引理 1
如果 Y Y Y X X X的子空间,则 Y Y Y的一个分割是一对无交的非空集合 A A A B B B,它们的的并等于 Y Y Y,并且 A A A B B B的任何一个都不包括另一个的极限点。如果空间 Y Y Y不存在这样的分割,则空间 Y Y Y是连通的。
有理数集 Q Q Q是不连通的。 事实上, Q Q Q的连通子空间只有单点集。

引理 2
如果集合 C C C D D D构成 X X X的一个分割,并且 Y Y Y X X X的一个连通子空间,那么, Y Y Y或者包含于 C C C,或者包含于 D D D

定理 1
含一个公共点的 X X X的连通子空间族的并是连通的。

定理 2
A A A是X的一个连通子空间。若 A ⊂ B ⊂ A ‾ A\subset B \subset \overline{A} ABA,则 B B B也是连通的。

定理 3
连通空间在连续映射下的像是连通的。

定理 4
有限多个连通空间的笛卡尔积是连通的。

R ω \R^{\omega} Rω在箱拓扑下是不连通的。
R ω \R^{\omega} Rω在积拓扑下是连通的。

2. 实直线上的连通子空间

定义 1
L L L是多于一个元素的全序集,并且满足条件:
(1) L L L有上确界性质;
(2)若 x < y x<y x<y,则存在 z z z使得 x < z < y x<z<y x<z<y.
则称 L L L是一个线性连续统

定理 1
L L L是一个赋予序拓扑的线性连续统,则 L L L是连通的,并且 L L L的每一个区间和每一条射线也都是连通的。
证:
Y Y Y L L L的一个凸子集,则 Y Y Y是连通的。

推论 1
实直线 R \R R是连通的,并且 R \R R中的每一个区间和射线也都是连通的。

推论 2
有序矩形是线性连续统,从而连通。

介值定理
f : X → Y f:X\to Y f:XY是从连通空间 X X X到具有序拓扑的全序集 Y Y Y一个连续映射。若 a a a b b b X X X的两个点并且 r r r Y Y Y中介于 f ( a ) f(a) f(a) f ( b ) f(b) f(b)之间的一个点,则 X X X中存在一个点 c c c使得 f ( c ) = r f(c)=r f(c)=r

定义 2
x , y x,y x,y是拓扑空间 X X X两点,若连续映射 γ : [ a , b ] → X \gamma:[a,b]\to X γ:[a,b]X满足 γ ( a ) = x , γ ( b ) = y \gamma(a)=x,\gamma(b)=y γ(a)=x,γ(b)=y,则称 γ \gamma γ为从 x x x y y y的一条道路(path)。若 X X X中任意两点都有道路连接,则称 X X X道路连通(path connected)的。

注意:道路连通必然连通;反之则不正确。

单位球是道路连通的。
穿孔欧式空间 R n − { 0 } \R^n-\{0\} Rn{0},其中 0 0 0 R n \R^n Rn中的原点。对于 n > 1 n>1 n>1,它是道路连通的。
单位球面 S n − 1 = { x : ∣ ∣ x ∣ ∣ = 1 } \mathcal{S}^{n-1}=\{x:||x||=1\} Sn1={x:x=1}。当 n > 1 n>1 n>1时,它是道路连通的。

有序矩形是连通的,但不是道路连通的。

3. 分支与局部连通性

定义 1
在给定的空间 X X X中定义一个等价关系:若 X X X中存在包含 x x x y y y的连通子空间,则规定 x ∼ y x\sim y xy。每一个等价类称为 X X X中的一个分支。(满足对称性自反性传递性

定理 1
X X X中所有分支是 X X X中这样一些两两无交的连通子空间,它们的并等于 X X X,并且 X X X中的每一个非空的连通子空间仅与一个分支相交。

定义 2
在空间 X X X上规定另外一种等价关系如下:如果在 X X X中存在一个从 x x x y y y的道路,记为 x ∼ y x\sim y xy。每一个等价类称为 X X X的一个道路连通分支。

定理 2
X X X的所有道路分支是 X X X中这样一些两两无交的道路连通子空间,它们的并等于 X X X,并且 X X X中每一个非空道路连通子空间仅与一个道路分支相交。

定义 3
空间 X X X称为 x x x处局部连通,如果对于 x x x的每一个邻域 U U U,存在 x x x的一个连通邻域 V V V包含于 U U U。若 X X X在它的每一个点处都是局部连通的,则简称 X X X是局部连通的。类似地,空间 X X X称为 x x x处局部道路连通,如果对于 x x x的每一个邻域 U U U,存在 x x x的一个道路连通邻域 V V V包含于 U U U。若 X X X在它的每一个点处都是局部道路连通的,则简称 X X X是局部道路连通的。

定理 3
空间 X X X是局部连通的当且仅当 X X X中的任何一个开集 U U U的每一个分支在 X X X中都是开的。

定理 4
空间 X X X是局部道路连通的当且仅当 X X X的任何一个开集 U U U的每一个道路分支在 X X X中都是开的。

定理 5
X X X是一个拓扑空间,则 X X X的每一个道路分支必定包含在 X X X的一个分支之中。若 X X X是局部道路连通的,则 X X X的分支与道路分支相同。

4. 紧致空间

定义 1
A \mathcal{A} A是空间 X X X的一个子集族,如果 A \mathcal{A} A的每一个成员之并等于 X X X,则称 A \mathcal{A} A X X X的一个覆盖。如果 A \mathcal{A} A的每一个成员都是 X X X的开子集,则称它为 X X X的一个开覆盖。

定义 2
X X X的任何一个开覆盖 A \mathcal{A} A,包含一个覆盖 X X X的有限子族,则称空间 X X X是紧致的。

实直线 R \R R不是紧致的,因为由开区间
A = { ( n , n + 2 ) ∣ n ∈ Z } \mathcal{A}=\{(n,n+2)|n\in Z\} A={(n,n+2)nZ}
所组成的 R \R R的覆盖并不包含覆盖 R \R R的任何有限子族。

R \R R的子空间
X = { 0 } ∪ { 1 / n ∣ n ∈ Z + } X = \{0\}\cup \{1/n|n \in Z_{+}\} X={0}{1/nnZ+}
是紧致的。

任一个仅含有限多个点的空间必是紧致的,因为此时 X X X的每一个开覆盖都是有限的。

区间 ( 0 , 1 ] (0,1] (0,1]不是紧致的。开覆盖
A = { ( 1 / n , 1 ] ∣ n ∈ Z + } \mathcal{A} = \{(1/n,1]|n \in Z_{+}\} A={(1/n,1]nZ+}
就不包含覆盖 ( 0 , 1 ] (0,1] (0,1]的有限子族。同理,区间 ( 0 , 1 ) (0,1) (0,1)也不是紧致的,但 [ 0 , 1 ] [0,1] [0,1]是紧致的。

引理 1
Y Y Y X X X的一个子空间,那么 Y Y Y是紧致的当且仅当由 X X X的开集所组成的 Y Y Y的每一个覆盖都包含着一个覆盖 Y Y Y的有限子族。

定理 1
紧致空间的每一个闭子集都是紧致的。

定理 2
Hausdorff空间的每一个紧致子空间都是闭的。

引理 2
Y Y Y是一个Hausdorff空间 X X X的一个紧致子空间, x 0 x_0 x0不属于 Y Y Y,则存在 X X X中的两个无交的开集 U U U V V V,它们分别包含 x 0 x_0 x0 Y Y Y

定理 2
紧致空间的连续像是紧致的。

定理 3
f : X → Y f:X\to Y f:XY是一个连续的一一映射。若 X X X是紧致的,并且 Y Y Y是Haussdorff的,则 f f f是一个同胚。

定理 4
有限多个紧致空间的积是紧致的。

引理2(管状引理)
考虑积空间 X × Y X\times Y X×Y,其中 Y Y Y是紧致的。如果 N N N X × Y X\times Y X×Y中包含着薄片 x 0 × Y x_0\times Y x0×Y的一个开集,则 N N N必包含着关于 x 0 × Y x_0\times Y x0×Y的某一个管子 W × Y W\times Y W×Y,其中 W W W x 0 x_0 x0 X X X中的一个邻域。

定义 3
X X X的一个子集族 C \mathcal{C} C称为具有有限交性质,如果 C \mathcal{C} C的任何一个有限子族 { C 1 , … , C n } \{C_1,\dots,C_n\} {C1,,Cn}的交 C 1 ∩ ⋯ ∩ C n C_1\cap\dots \cap C_n C1Cn是非空的。

定理 5
X X X是一个拓扑空间,则 X X X是紧致的当且仅当 X X X中具有有限交性质的每一个闭集族 C \mathcal{C} C,它的所有成员的交 ⋂ c ∈ C C \bigcap_{c\in \mathcal{C}}C cCC是非空的。

5. 实直线上的紧致子空间

定理 1
X X X是具有上确界性质的一个全序集,则关于序拓扑, X X X中的每一个闭区间都是紧致的。

推论 1
R \R R中任何一个闭区间都是紧致的。

定理 2
R n \R^n Rn中一个子集 A A A是紧致的,当且仅当它是闭的并且就欧氏度量 d d d或者平方度量 ρ \rho ρ而言是有界的。

定理 3(极值定理)
f : X → Y f:X\to Y f:XY是连续的,其中 Y Y Y是具有序拓扑的全序集,若 X X X是紧致的,则在 X X X中存在点 c c c和点 d d d,s.t. ∀ x ∈ X \forall x\in X xX f ( c ) ≤ f ( x ) ≤ f ( d ) f(c)\le f(x) \le f(d) f(c)f(x)f(d)

定义 1
( X , d ) (X,d) (X,d)是一个度量空间, A A A X X X的一个非空子集。对于每一个 x ∈ X x\in X xX x x x A A A的距离定义为
d ( x , A ) = i n f { d ( x , a ) ∣ a ∈ A } . d(x,A) = inf\{d(x,a)|a\in A\}. d(x,A)=inf{d(x,a)aA}.

引理 1(Lebesgue数引理)
A \mathcal{A} A为度量空间 ( X , d ) (X,d) (X,d)的一个开覆盖。若 X X X是紧致的,则存在 δ > 0 \delta > 0 δ>0使得 X X X的每一个直径小于 δ \delta δ的子集包含在 A \mathcal{A} A的某一个元素中。数 δ \delta δ称为开覆盖 A \mathcal{A} A的一个Lebesgue数。

定义 2
f f f是从度量空间 ( X , d X ) (X,d_X) (X,dX)到度量空间 ( Y , d Y ) (Y,d_Y) (Y,dY)的一个函数。若对任意 ϵ > 0 \epsilon >0 ϵ>0,存在 δ > 0 \delta > 0 δ>0使得对于 X X X的任意两点 x 0 , x 1 x_0,x_1 x0,x1,有
d X ( x 0 , x 1 ) < δ    ⟹    d Y ( f ( x 0 ) , f ( x 1 ) ) < ϵ , d_X(x_0,x_1)<\delta \implies d_Y(f(x_0),f(x_1))<\epsilon, dX(x0,x1)<δdY(f(x0),f(x1))<ϵ,
则称函数 f f f一致连续的

定理 4(一致连续性定理)
f : X → Y f:X\to Y f:XY是从紧致度量空间 ( X , d X ) (X,d_X) (X,dX)到度量空间 ( Y , d Y ) (Y,d_Y) (Y,dY)的连续映射,则 f f f是一致连续的。

定义 3
X X X是一个空间, x ∈ X x\in X xX。若单点集 { x } \{x\} {x} X X X中是开的,则称 x x x X X X的一个孤立点。

定理 5
X X X是一个非空的紧致的Hausdorff空间。若 X X X中没有孤立点,则 X X X是不可数的。

推论 1
R \R R中的每一个闭区间都是不可数的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值