本文参考熊金城《拓扑学》第2版,仅梳理思路,具体证明请查阅原书。
微积分中连续函数的三个基本定理:
- 介值定理
- 极大值定理(最大最小值定理)
- 一致连续性定理
1. 连通空间
定义
设
X
X
X是一个拓扑空间。所谓
X
X
X的一个分割,是指
X
X
X的一对无交的非空开子集
U
U
U和
V
V
V,它们的并等于
X
X
X。如果
X
X
X的分割不存在,则称空间
X
X
X是连通的。
等价定义
空间
X
X
X是连通的当且仅当
X
X
X中既开又闭的子集只有空集和
X
X
X本身。
事实上,若
A
A
A是
X
X
X中一个既开又闭的非空真子集,那么
U
=
A
U=A
U=A和
V
=
X
−
A
V=X-A
V=X−A是
X
X
X的非空无交开集使得其并等于
X
X
X,从而它们构成了
X
X
X的一个分割。反之,如果
U
U
U和
V
V
V构成
X
X
X的一个分割,则
U
U
U便是
X
X
X的既开又闭的非空真子集。
引理 1
如果
Y
Y
Y是
X
X
X的子空间,则
Y
Y
Y的一个分割是一对无交的非空集合
A
A
A和
B
B
B,它们的的并等于
Y
Y
Y,并且
A
A
A和
B
B
B的任何一个都不包括另一个的极限点。如果空间
Y
Y
Y不存在这样的分割,则空间
Y
Y
Y是连通的。
有理数集
Q
Q
Q是不连通的。 事实上,
Q
Q
Q的连通子空间只有单点集。
引理 2
如果集合
C
C
C和
D
D
D构成
X
X
X的一个分割,并且
Y
Y
Y是
X
X
X的一个连通子空间,那么,
Y
Y
Y或者包含于
C
C
C,或者包含于
D
D
D。
定理 1
含一个公共点的
X
X
X的连通子空间族的并是连通的。
定理 2
设
A
A
A是X的一个连通子空间。若
A
⊂
B
⊂
A
‾
A\subset B \subset \overline{A}
A⊂B⊂A,则
B
B
B也是连通的。
定理 3
连通空间在连续映射下的像是连通的。
定理 4
有限多个连通空间的笛卡尔积是连通的。
R
ω
\R^{\omega}
Rω在箱拓扑下是不连通的。
R
ω
\R^{\omega}
Rω在积拓扑下是连通的。
2. 实直线上的连通子空间
定义 1
若
L
L
L是多于一个元素的全序集,并且满足条件:
(1)
L
L
L有上确界性质;
(2)若
x
<
y
x<y
x<y,则存在
z
z
z使得
x
<
z
<
y
x<z<y
x<z<y.
则称
L
L
L是一个线性连续统。
定理 1
若
L
L
L是一个赋予序拓扑的线性连续统,则
L
L
L是连通的,并且
L
L
L的每一个区间和每一条射线也都是连通的。
证:
若
Y
Y
Y是
L
L
L的一个凸子集,则
Y
Y
Y是连通的。
推论 1
实直线
R
\R
R是连通的,并且
R
\R
R中的每一个区间和射线也都是连通的。
推论 2
有序矩形是线性连续统,从而连通。
介值定理
设
f
:
X
→
Y
f:X\to Y
f:X→Y是从连通空间
X
X
X到具有序拓扑的全序集
Y
Y
Y一个连续映射。若
a
a
a和
b
b
b是
X
X
X的两个点并且
r
r
r是
Y
Y
Y中介于
f
(
a
)
f(a)
f(a)和
f
(
b
)
f(b)
f(b)之间的一个点,则
X
X
X中存在一个点
c
c
c使得
f
(
c
)
=
r
f(c)=r
f(c)=r。
定义 2
设
x
,
y
x,y
x,y是拓扑空间
X
X
X两点,若连续映射
γ
:
[
a
,
b
]
→
X
\gamma:[a,b]\to X
γ:[a,b]→X满足
γ
(
a
)
=
x
,
γ
(
b
)
=
y
\gamma(a)=x,\gamma(b)=y
γ(a)=x,γ(b)=y,则称
γ
\gamma
γ为从
x
x
x到
y
y
y的一条道路(path)。若
X
X
X中任意两点都有道路连接,则称
X
X
X是道路连通(path connected)的。
注意:道路连通必然连通;反之则不正确。
单位球是道路连通的。
穿孔欧式空间:
R
n
−
{
0
}
\R^n-\{0\}
Rn−{0},其中
0
0
0是
R
n
\R^n
Rn中的原点。对于
n
>
1
n>1
n>1,它是道路连通的。
单位球面:
S
n
−
1
=
{
x
:
∣
∣
x
∣
∣
=
1
}
\mathcal{S}^{n-1}=\{x:||x||=1\}
Sn−1={x:∣∣x∣∣=1}。当
n
>
1
n>1
n>1时,它是道路连通的。
有序矩形是连通的,但不是道路连通的。
3. 分支与局部连通性
定义 1
在给定的空间
X
X
X中定义一个等价关系:若
X
X
X中存在包含
x
x
x与
y
y
y的连通子空间,则规定
x
∼
y
x\sim y
x∼y。每一个等价类称为
X
X
X中的一个分支。(满足对称性,自反性,传递性)
定理 1
X
X
X中所有分支是
X
X
X中这样一些两两无交的连通子空间,它们的并等于
X
X
X,并且
X
X
X中的每一个非空的连通子空间仅与一个分支相交。
定义 2
在空间
X
X
X上规定另外一种等价关系如下:如果在
X
X
X中存在一个从
x
x
x到
y
y
y的道路,记为
x
∼
y
x\sim y
x∼y。每一个等价类称为
X
X
X的一个道路连通分支。
定理 2
X
X
X的所有道路分支是
X
X
X中这样一些两两无交的道路连通子空间,它们的并等于
X
X
X,并且
X
X
X中每一个非空道路连通子空间仅与一个道路分支相交。
定义 3
空间
X
X
X称为在
x
x
x处局部连通,如果对于
x
x
x的每一个邻域
U
U
U,存在
x
x
x的一个连通邻域
V
V
V包含于
U
U
U。若
X
X
X在它的每一个点处都是局部连通的,则简称
X
X
X是局部连通的。类似地,空间
X
X
X称为在
x
x
x处局部道路连通,如果对于
x
x
x的每一个邻域
U
U
U,存在
x
x
x的一个道路连通邻域
V
V
V包含于
U
U
U。若
X
X
X在它的每一个点处都是局部道路连通的,则简称
X
X
X是局部道路连通的。
定理 3
空间
X
X
X是局部连通的当且仅当
X
X
X中的任何一个开集
U
U
U的每一个分支在
X
X
X中都是开的。
定理 4
空间
X
X
X是局部道路连通的当且仅当
X
X
X的任何一个开集
U
U
U的每一个道路分支在
X
X
X中都是开的。
定理 5
设
X
X
X是一个拓扑空间,则
X
X
X的每一个道路分支必定包含在
X
X
X的一个分支之中。若
X
X
X是局部道路连通的,则
X
X
X的分支与道路分支相同。
4. 紧致空间
定义 1
设
A
\mathcal{A}
A是空间
X
X
X的一个子集族,如果
A
\mathcal{A}
A的每一个成员之并等于
X
X
X,则称
A
\mathcal{A}
A是
X
X
X的一个覆盖。如果
A
\mathcal{A}
A的每一个成员都是
X
X
X的开子集,则称它为
X
X
X的一个开覆盖。
定义 2
若
X
X
X的任何一个开覆盖
A
\mathcal{A}
A,包含一个覆盖
X
X
X的有限子族,则称空间
X
X
X是紧致的。
实直线
R
\R
R不是紧致的,因为由开区间
A
=
{
(
n
,
n
+
2
)
∣
n
∈
Z
}
\mathcal{A}=\{(n,n+2)|n\in Z\}
A={(n,n+2)∣n∈Z}
所组成的
R
\R
R的覆盖并不包含覆盖
R
\R
R的任何有限子族。
R
\R
R的子空间
X
=
{
0
}
∪
{
1
/
n
∣
n
∈
Z
+
}
X = \{0\}\cup \{1/n|n \in Z_{+}\}
X={0}∪{1/n∣n∈Z+}
是紧致的。
任一个仅含有限多个点的空间必是紧致的,因为此时 X X X的每一个开覆盖都是有限的。
区间
(
0
,
1
]
(0,1]
(0,1]不是紧致的。开覆盖
A
=
{
(
1
/
n
,
1
]
∣
n
∈
Z
+
}
\mathcal{A} = \{(1/n,1]|n \in Z_{+}\}
A={(1/n,1]∣n∈Z+}
就不包含覆盖
(
0
,
1
]
(0,1]
(0,1]的有限子族。同理,区间
(
0
,
1
)
(0,1)
(0,1)也不是紧致的,但
[
0
,
1
]
[0,1]
[0,1]是紧致的。
引理 1
设
Y
Y
Y是
X
X
X的一个子空间,那么
Y
Y
Y是紧致的当且仅当由
X
X
X的开集所组成的
Y
Y
Y的每一个覆盖都包含着一个覆盖
Y
Y
Y的有限子族。
定理 1
紧致空间的每一个闭子集都是紧致的。
定理 2
Hausdorff空间的每一个紧致子空间都是闭的。
引理 2
设
Y
Y
Y是一个Hausdorff空间
X
X
X的一个紧致子空间,
x
0
x_0
x0不属于
Y
Y
Y,则存在
X
X
X中的两个无交的开集
U
U
U和
V
V
V,它们分别包含
x
0
x_0
x0和
Y
Y
Y。
定理 2
紧致空间的连续像是紧致的。
定理 3
设
f
:
X
→
Y
f:X\to Y
f:X→Y是一个连续的一一映射。若
X
X
X是紧致的,并且
Y
Y
Y是Haussdorff的,则
f
f
f是一个同胚。
定理 4
有限多个紧致空间的积是紧致的。
引理2(管状引理)
考虑积空间
X
×
Y
X\times Y
X×Y,其中
Y
Y
Y是紧致的。如果
N
N
N是
X
×
Y
X\times Y
X×Y中包含着薄片
x
0
×
Y
x_0\times Y
x0×Y的一个开集,则
N
N
N必包含着关于
x
0
×
Y
x_0\times Y
x0×Y的某一个管子
W
×
Y
W\times Y
W×Y,其中
W
W
W是
x
0
x_0
x0在
X
X
X中的一个邻域。
定义 3
X
X
X的一个子集族
C
\mathcal{C}
C称为具有有限交性质,如果
C
\mathcal{C}
C的任何一个有限子族
{
C
1
,
…
,
C
n
}
\{C_1,\dots,C_n\}
{C1,…,Cn}的交
C
1
∩
⋯
∩
C
n
C_1\cap\dots \cap C_n
C1∩⋯∩Cn是非空的。
定理 5
设
X
X
X是一个拓扑空间,则
X
X
X是紧致的当且仅当
X
X
X中具有有限交性质的每一个闭集族
C
\mathcal{C}
C,它的所有成员的交
⋂
c
∈
C
C
\bigcap_{c\in \mathcal{C}}C
⋂c∈CC是非空的。
5. 实直线上的紧致子空间
定理 1
设
X
X
X是具有上确界性质的一个全序集,则关于序拓扑,
X
X
X中的每一个闭区间都是紧致的。
推论 1
R
\R
R中任何一个闭区间都是紧致的。
定理 2
R
n
\R^n
Rn中一个子集
A
A
A是紧致的,当且仅当它是闭的并且就欧氏度量
d
d
d或者平方度量
ρ
\rho
ρ而言是有界的。
定理 3(极值定理)
设
f
:
X
→
Y
f:X\to Y
f:X→Y是连续的,其中
Y
Y
Y是具有序拓扑的全序集,若
X
X
X是紧致的,则在
X
X
X中存在点
c
c
c和点
d
d
d,s.t.
∀
x
∈
X
\forall x\in X
∀x∈X有
f
(
c
)
≤
f
(
x
)
≤
f
(
d
)
f(c)\le f(x) \le f(d)
f(c)≤f(x)≤f(d) 。
定义 1
设
(
X
,
d
)
(X,d)
(X,d)是一个度量空间,
A
A
A是
X
X
X的一个非空子集。对于每一个
x
∈
X
x\in X
x∈X,
x
x
x到
A
A
A的距离定义为
d
(
x
,
A
)
=
i
n
f
{
d
(
x
,
a
)
∣
a
∈
A
}
.
d(x,A) = inf\{d(x,a)|a\in A\}.
d(x,A)=inf{d(x,a)∣a∈A}.
引理 1(Lebesgue数引理)
设
A
\mathcal{A}
A为度量空间
(
X
,
d
)
(X,d)
(X,d)的一个开覆盖。若
X
X
X是紧致的,则存在
δ
>
0
\delta > 0
δ>0使得
X
X
X的每一个直径小于
δ
\delta
δ的子集包含在
A
\mathcal{A}
A的某一个元素中。数
δ
\delta
δ称为开覆盖
A
\mathcal{A}
A的一个Lebesgue数。
定义 2
设
f
f
f是从度量空间
(
X
,
d
X
)
(X,d_X)
(X,dX)到度量空间
(
Y
,
d
Y
)
(Y,d_Y)
(Y,dY)的一个函数。若对任意
ϵ
>
0
\epsilon >0
ϵ>0,存在
δ
>
0
\delta > 0
δ>0使得对于
X
X
X的任意两点
x
0
,
x
1
x_0,x_1
x0,x1,有
d
X
(
x
0
,
x
1
)
<
δ
⟹
d
Y
(
f
(
x
0
)
,
f
(
x
1
)
)
<
ϵ
,
d_X(x_0,x_1)<\delta \implies d_Y(f(x_0),f(x_1))<\epsilon,
dX(x0,x1)<δ⟹dY(f(x0),f(x1))<ϵ,
则称函数
f
f
f是一致连续的。
定理 4(一致连续性定理)
设
f
:
X
→
Y
f:X\to Y
f:X→Y是从紧致度量空间
(
X
,
d
X
)
(X,d_X)
(X,dX)到度量空间
(
Y
,
d
Y
)
(Y,d_Y)
(Y,dY)的连续映射,则
f
f
f是一致连续的。
定义 3
设
X
X
X是一个空间,
x
∈
X
x\in X
x∈X。若单点集
{
x
}
\{x\}
{x}在
X
X
X中是开的,则称
x
x
x为
X
X
X的一个孤立点。
定理 5
设
X
X
X是一个非空的紧致的Hausdorff空间。若
X
X
X中没有孤立点,则
X
X
X是不可数的。
推论 1
R
\R
R中的每一个闭区间都是不可数的。