基于决策树的用户群规则归纳

为了解决聚类分析特点描述模糊和无法预测新客户的问题,本文采用CART回归树建立决策树模型。通过训练集和测试集,模型在预测测试集类别时表现出高准确性。规则归纳为四类用户的具体条件,简化了对新老客户的分类和预测,即使非技术人员也能理解应用。
摘要由CSDN通过智能技术生成

上篇文章通过聚类分析将全体客户群分4个类别,并保存了每一位用户所对应的类别。
在这里插入图片描述
在这里插入图片描述
现在有几个新问题?
1、特点描述太模糊,对各组的R、F、M比较是相对的,比如R有高频低频之说,但并没有给出具体的分割点。
2、不可外延,现有客户的类别是给了,但若新来一份客户名单,业务人员又得抓瞎。

为解决这个问题,我们引入决策树模型,为各个类别建立非技术人员也能读懂并使用的具体规则。

一、源数据

用户id+所属类别(聚类分析得到的)+还原后的R、F、M值(之前有离散化处理)
在这里插入图片描述

二、决策树建模

常用的三种算法:CART 回归树、C4.5、C5,通常通过分类效果择优选择,这里以CART 回归树为例。
源数据10585行,划分训练集:测试集=7:3,前者由于建模、样本内检验,后者用于样本外检验。

  1. Rcode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值