上篇文章通过聚类分析将全体客户群分4个类别,并保存了每一位用户所对应的类别。
现在有几个新问题?
1、特点描述太模糊,对各组的R、F、M比较是相对的,比如R有高频低频之说,但并没有给出具体的分割点。
2、不可外延,现有客户的类别是给了,但若新来一份客户名单,业务人员又得抓瞎。
为解决这个问题,我们引入决策树模型,为各个类别建立非技术人员也能读懂并使用的具体规则。
一、源数据
用户id+所属类别(聚类分析得到的)+还原后的R、F、M值(之前有离散化处理)
二、决策树建模
常用的三种算法:CART 回归树、C4.5、C5,通常通过分类效果择优选择,这里以CART 回归树为例。
源数据10585行,划分训练集:测试集=7:3,前者由于建模、样本内检验,后者用于样本外检验。
- Rcode