强化学习Q-Learning算法和简单迷宫代码

使用到的符号:

agent 代理
reward 奖励
state(s) 状态
action(a) 行为
R reward 矩阵
Q 矩阵:表示从经验中学到的知识
episode:表示 初始→目标 一整个流程

贝尔曼方程(迭代公式):

 
Q ( s , a ) ← Q ( s , a ) + α [ R ( s , a ) + γ max ⁡ a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s,a) \leftarrow Q(s,a) + \alpha [R(s,a) + \gamma \mathop {\max }\limits_{a'} Q(s',a') - Q(s,a)] Q(s,a)Q(s,a)+α[R(s,a)+γamaxQ(s,a)Q(s,a)]

α = 1 \alpha = 1 α=1

Q ( s , a ) ← R ( s , a ) + γ max ⁡ a ′ Q ( s ′ , a ′ ) Q(s,a) \leftarrow R(s,a) + \gamma \mathop {\max }\limits_{a'} Q(s',a') Q(s,a)R(s,a)+γamaxQ(s,a)

其中, α \alpha α 是学习率, γ \gamma γ 是超参数, Q ( s ′ , a ′ ) Q(s',a') Q(s,a) 表示下一个状态和行为。

以一个简单迷宫为例:设 agent 在房子内任意一个房间(0-4),迷宫出口为 5,即走出迷宫的条件是到房子外。
在这里插入图片描述
建模成 (“状态”对应节点,“行为”对应边):
在这里插入图片描述
构建 R 矩阵(R 固定不变):
在这里插入图片描述
初始化 Q 为零矩阵, γ = 0.8 \gamma = 0.8 γ=0.8,以一个 episode 具体说明。

在这里插入图片描述

假设初始状态为 2。

① 当前状态 2 的下一步行为只能选 3,根据迭代公式,考虑下一个状态和行为,状态 3 可能的行为:1、2 或 4。

在这里插入图片描述
② 当前状态为 3,随机地,选取转至状态 4。下一个状态和行为:状态 4 可能的行为:0、3、5。

在这里插入图片描述
③ 当前状态为 4,随机地,选取转至状态 5。下一个状态和行为:状态 5 可能的行为:1、4、5。

在这里插入图片描述

状态 5 为目标状态,故一次 episode 完成。

一次 episode 后的 Q 矩阵

在这里插入图片描述

具体 Q-Learning 算法的计算步骤:

在这里插入图片描述

迷宫实例及代码:

红色方块是 agent ,黄色圆圈和黑色方块都是目标状态,其中,黄色圆圈的奖励为 1,黑色方块的奖励为 -1。该迷宫一共有 16 个状态,每个状态可能的行为:u(上),d(下),l(左),r(右)。

在这里插入图片描述

程序主循环
from Q_Learning.maze_env import Maze
from Q_Learning.RL_brain import DQN
import time


def run_maze():
    print("====Game Start====")
    step = 0
    max_episode = 500
    for episode in range(max_episode):
        state = env.reset()  # 重置智能体位置
        step_every_episode = 0
        epsilon = episode / max_episode  # 动态变化随机值
        while True:
            if episode < 10:
                time.sleep(0.001)
            if episode > 480:
                time.sleep(0.002)
            env.render()  # 显示新位置
            action = model.choose_action(state, epsilon)  # 根据状态选择行为
            # 环境根据行为给出下一个状态,奖励,是否结束。
            next_state, reward, terminal = env.step(action)
            model.store_transition(state, action, reward, next_state)  # 模型存储经历
            # 控制学习起始时间(先积累记忆再学习)和控制学习的频率(积累多少步经验学习一次)
            if step > 200 and step % 5 == 0:
                model.learn()
            # 进入下一步
            state = next_state
            if terminal:
                print("episode=", episode, end=",")
                print("step=", step_every_episode)
                break
            step += 1
            step_every_episode += 1
    # 游戏环境结束
    print("====Game Over====")
    env.destroy()


if __name__ == "__main__":
    env = Maze()  # 环境
    model = DQN(
        n_states=env.n_states,
        n_actions=env.n_actions
    )  # 算法模型
    run_maze()
    env.mainloop()
    model.plot_cost()  # 误差曲线
环境模块 maze_env.py
import tkinter as tk
import sys
import numpy as np

UNIT = 40  # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        print("<env init>")
        super(Maze, self).__init__()
        # 动作空间(定义智能体可选的行为),action=0-3
        self.action_space = ['u', 'd', 'l', 'r']
        # 使用变量
        self.n_actions = len(self.action_space)
        self.n_states = 2
        # 配置信息
        self.title('maze')
        self.geometry("160x160")
        # 初始化操作
        self.__build_maze()

    def render(self):
        # time.sleep(0.1)
        self.update()

    def reset(self):
        # 智能体回到初始位置
        # time.sleep(0.1)
        self.update()
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return (np.array(self.canvas.coords(self.rect)[:2]) - np.array(self.canvas.coords(self.oval)[:2])) / (MAZE_H * UNIT)

    def step(self, action):
        # 智能体向前移动一步:返回next_state,reward,terminal
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:  # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:  # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:  # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:  # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        next_coords = self.canvas.coords(self.rect)  # next state

        # reward function
        if next_coords == self.canvas.coords(self.oval):
            reward = 1
            print("victory")
            done = True
        elif next_coords in [self.canvas.coords(self.hell1)]:
            reward = -1
            print("defeat")
            done = True
        else:
            reward = 0
            done = False
        s_ = (np.array(next_coords[:2]) - np.array(self.canvas.coords(self.oval)[:2])) / (MAZE_H * UNIT)
        return s_, reward, done

    def __build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                                height=MAZE_H * UNIT,
                                width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)
        origin = np.array([20, 20])
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        self.canvas.pack()
DQN模型 RL_brain.py
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
import matplotlib.pyplot as plt


class Net(nn.Module):
    def __init__(self, n_states, n_actions):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(n_states, 10)
        self.fc2 = nn.Linear(10, n_actions)
        self.fc1.weight.data.normal_(0, 0.1)
        self.fc2.weight.data.normal_(0, 0.1)

    def forward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        out = self.fc2(x)
        return out


class DQN:
    def __init__(self, n_states, n_actions):
        print("<DQN init>")
        # DQN有两个net:target net和eval net,具有选动作,存经历,学习三个基本功能
        self.eval_net, self.target_net = Net(n_states, n_actions), Net(n_states, n_actions)
        self.loss = nn.MSELoss()
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=0.01)
        self.n_actions = n_actions
        self.n_states = n_states
        # 使用变量
        self.learn_step_counter = 0  # target网络学习计数
        self.memory_counter = 0  # 记忆计数
        self.memory = np.zeros((2000, 2 * 2 + 2))  # 2*2(state和next_state,每个x,y坐标确定)+2(action和reward),存储2000个记忆体
        self.cost = []  # 记录损失值

    def choose_action(self, x, epsilon):
        # print("<choose_action>")
        x = torch.unsqueeze(torch.FloatTensor(x), 0)  # (1,2)
        if np.random.uniform() < epsilon:
            action_value = self.eval_net.forward(x)
            action = torch.max(action_value, 1)[1].data.numpy()[0]
        else:
            action = np.random.randint(0, self.n_actions)
        # print("action=", action)
        return action

    def store_transition(self, state, action, reward, next_state):
        # print("<store_transition>")
        transition = np.hstack((state, [action, reward], next_state))
        index = self.memory_counter % 200  # 满了就覆盖旧的
        self.memory[index, :] = transition
        self.memory_counter += 1

    def learn(self):
        # print("<learn>")
        # target net 更新频率,用于预测,不会及时更新参数
        if self.learn_step_counter % 100 == 0:
            self.target_net.load_state_dict((self.eval_net.state_dict()))
        self.learn_step_counter += 1

        # 使用记忆库中批量数据
        sample_index = np.random.choice(200, 16)  # 2000个中随机抽取32个作为batch_size
        memory = self.memory[sample_index, :]  # 抽取的记忆单元,并逐个提取
        state = torch.FloatTensor(memory[:, :2])
        action = torch.LongTensor(memory[:, 2:3])
        reward = torch.LongTensor(memory[:, 3:4])
        next_state = torch.FloatTensor(memory[:, 4:6])

        # 计算loss,q_eval:所采取动作的预测value,q_target:所采取动作的实际value
        q_eval = self.eval_net(state).gather(1, action) # eval_net->(64,4)->按照action索引提取出q_value
        q_next = self.target_net(next_state).detach()
        # torch.max->[values=[],indices=[]] max(1)[0]->values=[]
        q_target = reward + 0.9 * q_next.max(1)[0].unsqueeze(1) # label
        loss = self.loss(q_eval, q_target)
        self.cost.append(loss)
        # 反向传播更新
        self.optimizer.zero_grad()  # 梯度重置
        loss.backward()  # 反向求导
        self.optimizer.step()  # 更新模型参数

    def plot_cost(self):
        plt.plot(np.arange(len(self.cost)), self.cost)
        plt.xlabel("step")
        plt.ylabel("cost")
        plt.show()

代码存在的一点缺陷:存在个别 episode 需要经过大量状态才能找到目标状态(主要表现在程序在两个状态间来回跳动:7→8→7→8→7→8…,需要很长时间才能跳出这个局限)

致谢:https://blog.csdn.net/itplus/article/details/9361915
   https://www.cnblogs.com/nrocky/p/14496252.html

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
人工智能大作业-基于强化学习求解迷宫问题python实现源码+项目说明+实验报告+可执行文件 【项目介绍】 该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶, 或者实际项目借鉴参考! 当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 强化学习求解迷宫问题 核心代码 - maze.py: 迷宫类的实现,迷宫信息用一个二维数组表示,数组中的每个数代表一个方格,数字值代表方格类型(如0表示墙, 2表示陷阱, 3表示火)。 - train_qtable.py: Q表类的实现,Q表类有Q值的存储,决策的进行,Q表的学习等功能函数,进行预测和学习时会与迷宫(“环境”)进行交互,对其输入动作,得到反馈。 - train_network.py: 监督学习模型的学习,预测等实现。 - git.py: 监督学习用到的批量式学习仓库。 - maze_map.py: 存储6个事先定义好的迷宫 - draw.py: Q表的可视化以及完整走迷宫过程的呈现。 UI代码 - ui.py: 顶层窗口,有两个标签页 - ui_basic.py: “已有迷宫”标签页的实现,用户可以从我们定义好的几个迷宫中选择一个,进行训练并查看完整的走迷宫过程。 - ui_userDefine.py:“用户自定义”标签页的实现,用户可以输入任意大小的迷宫,自定义火焰周期,训练次数上限。之后进行训练,并以三种不同的速度查看完整的走迷宫结果。 - draw_ui.py: 在ui界面绘制Q表和走迷宫过程。 运行方法 - 打开“可执行文件/ui.exe” - 运行“代码/ui.py” - 运行“代码/train_qtable.py”,对maze_map中定义的迷宫进行训练,训练结束后显示Q表和完整走迷宫过程。 编译运行环境 python 3.6, pyqt 5.13.1, matplotlib 3.0.2, numpy 1.15.2, Pyinstaller 3.5
Q-learning 是一种基于反馈的学习算法,用于解决强化学习问题,它通过学习一系列动作和状态之间的最优策略来实现目标。Q-learning 的核心思想是通过不断地更新动作值函数 Q(s, a) 来找到最优的动作策略。 Q-learning 的基本步骤如下: 1. 初始化 Q(s, a) 表,其中 s 是状态,a 是动作,初始值可以是 0 或者随机值。 2. 选择动作 a ,并观察环境的反馈奖励 r 和新的状态 s'。 3. 更新 Q(s, a) 值:Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a)),其中 α 是学习率,γ 是折扣因子。 4. 将状态 s 更新为 s'。 5. 重复步骤 2-4 直到达到终止状态或者达到最大迭代次数。 下面是一个简单的 Q-learning 代码示例: ```python import numpy as np # 初始化 Q 表 Q = np.zeros([num_states, num_actions]) # 定义学习率 alpha = 0.1 # 定义折扣因子 gamma = 0.9 # 定义探索率,用于在训练过程中平衡探索和利用 epsilon = 0.1 for episode in range(num_episodes): state = env.reset() done = False while not done: # 在 ε-greedy 策略下选择动作 if np.random.rand() < epsilon: action = env.action_space.sample() # 随机选择一个动作 else: action = np.argmax(Q[state, :]) # 根据 Q 表选择最优动作 # 执行所选择的动作 next_state, reward, done, _ = env.step(action) # 根据 Q-learning 更新 Q 表 Q[state, action] = Q[state, action] + alpha * (reward + gamma * np.max(Q[next_state, :]) - Q[state, action]) state = next_state ``` 在这个示例中,我们使用了一个简单的环境来说明 Q-learning 的基本实现过程。在实际应用中,可以根据具体问题对算法做出一些改进和调整,以达到更好的性能和效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值