1、在给定的范围内产生随机整数
#只能是随机整数
#numpy随机函数
import numpy as np
# 在给定范围内取随机整数
arr=np.random.randint(100,200,size=(5,4),dtype=int)
print('1、给定双向边界(100,200),产生的随机数:')
print(arr)
arr1=np.random.randint(200,size=(5,4),dtype=int)
print('2、只给定单向边界200,产生的随机数:')
# 只能是随机整数
print(arr1)
2、产生均匀分布的样本值
import numpy as np
#产生均匀分布的样本值
arr1=np.random.rand(4) #一维数组
arr11=np.random.rand(4,3) #二维数组
arr111=np.random.rand(4,3,2) #多维数组
print('一维数组:')
print(arr1)
print('二维数组:')
print(arr11)
print('三维数组:')
print(arr111)
3、产生正态分布的样本值
import numpy as np
arr2=np.random.randn(3)
arr22=np.random.randn(3,3)
arr222=np.random.randn(3,3,3)
print('一维正态分布的数组:')
print(arr2)
print('二维正态分布的数组:')
print(arr22)
print('三维正态分布的数组:')
print(arr222)
结果:
4、随机种子
先种下一颗种子,再根据种子值计算出要生成的随机数是多少,种子一定,随机数也是一定的
import numpy as np
np.random.seed(10) #种下种子
arr3=np.random.random()
print(arr3)
arr34=np.random.random(4)
print(arr34)
结果:
5、一个序列随机排序
#对于一个序列随机排序,不改变原数组 permutation
#对于一个序列随机排序,改变原数组 shuffle
import numpy as np
#对于一个序列随机排序,不改变原数组 permutation
#对于一个序列随机排序,改变原数组 shuffle
print('permutation 对于一个序列随机排序,不改变原数组')
arr4=np.arange(12,24).reshape(2,6)
print("随机生成的原数组:")
print(arr4)
arr44=np.random.permutation(arr4)
print("permutation(不改变原数组)随机排序后的数组:")
print(arr44)
print("原数组:")
print(arr4)
print("\n")
print('shuffle 对一个序列随机排序,改变原数组')
arr5=np.arange(12,24).reshape(3,4)
print("随机生成的原数组:")
print(arr5)
print("shuffle(改变原数组)随机排序后的数组:")
arr55=np.random.shuffle(arr5)
print(arr55)
print("原数组:")
print(arr5)
#
结果:
permutation 生产新的数组序列,从始至终都有两个数组
shuffle 没有生成新的数组序列,而是直接附加在原数组上,从始至终只有1个数组
6、产生具有均匀分布的数组uniform(low,high,size)
import numpy as np
arr5=np.random.uniform(5,15,size=(2,5))
print(arr5)
结果:
7、产生具有正态分布的数组
import numpy as np
arr6=np.random.normal(5,9,size=(2,5))
print(arr6)
normal(loc,scale,size) loc表示均值 scale表示标准差
结果:
8、产生具有泊松分布的数组
poisson(lam,size)lam表示随机事件发生的概率
import numpy as np
arr7=np.random.poisson(0.6,size=(5,8))
print(arr7)
结果: