数据可视化之Seaborn数据集分布的可视化

本文介绍了Seaborn在数据可视化中的应用,包括如何解决绘图中的乱码问题,以及Seaborn的FacetGrid、JointGrid和PairGrid三个关键类的使用。重点讲解了单变量分布图,如直方图、核密度估计和拟合参数分布,以及二元分布图如散点图、Hexbin图和核密度估计。此外,还详细阐述了如何使用PairGrid类来可视化数据集中成对的关系,并展示了如何指定变量进行画图以及在上三角和下三角区域选择不同类型的图。
摘要由CSDN通过智能技术生成

解决绘图中乱码问题

plt.rcParams['font.sans-serif']=['Simhei']   # 解决中文乱码问题
plt.rcParams['axes.unicode_minus']=False   # 解决坐标轴刻度负号乱码

Seaborn中的三个类

FacetGrid类

在这里插入图片描述

JointGrid类

在这里插入图片描述

PairGrid类

在这里插入图片描述

Seaborn中数据集分布的可视化

Matplotlib是Python主要的绘图库。但是不建议你直接使用它,原因与不推荐你使用NumPy是一样的。虽然Matplotlib很强大,它本身就很复杂,你的图经过大量的调整才能变精致。
Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的统计图表
导入标准库

import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes = True)
np.random.seed(sum(map(ord,"distributions")))  # 随机数生成种子

单变量分布图

sns.distplot(a,bins=None,hist=True,kde=True,rug=False,fit=None,hist_kws=None,kde_kws=None,rug_kws=None,fit_kws=None,color=None,vertical=False,norm_hist=False,axlabel=None,label=None,ax=None,)
直方图
x = np.random.normal(size = 100)
sns.distplot(x,
			 bins = 30,
			 kde = True, # 是否化核密度曲线
			 rug = True   # 是否将数组中的数据点画出来作为坐标轴的刻度线
			 )

在这里插入图片描述

核密度估计

或许你对核密度估计(KDE,Kernel density estimaton)可能不像直方图那么熟悉,但它是绘制分布形状的有力工具。如同直方图一样,KDE图会对一个轴上的另一轴的高度的观测密度进行描述:
绘制KDE比绘制直方图更有计算性。所发生的是,每一个观察都被一个以这个值为中心的正态( 高斯)曲线所取代。

x = np.random.normal(0, 1, size=10)
bandwidth = 1.06 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值