在jupyter notebook 中同时输入多行
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
np.linalg.norm(x, ord=None, axis=None, keepdims=False)
矩阵或向量范数。此函数能够返回八个不同矩阵规范之一,或无数个向量规范(如下所述)之一,具体取决于在ord参数的值上。
参数
- x : 输入的数组,必须为一维或者二维
- ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, 可选
ord | norm for matrices | norm for vectors |
---|---|---|
None | Frobenius norm | 2-norm |
‘fro’ | Frobenius norm | – |
‘nuc’ | nuclear norm | – |
inf | max(sum(abs(x), axis=1)) | max(abs(x)) |
-inf | min(sum(abs(x), axis=1)) | min(abs(x)) |
0 | – | sum(x != 0) |
1 | max(sum(abs(x), axis=0)) | as below |
-1 | min(sum(abs(x), axis=0)) | as below |
2 | 2-norm (largest sing. value) | as below |
-2 | smallest singular value | as below |
other | – | sum(abs(x)ord)(1./ord) |
-
axis : 可选. 如果
axis
是整数,则指定要沿其移动的x
轴计算向量范数。 如果axis
是2元组,则指定保持二维矩阵的轴,以及这些矩阵的矩阵范数计算。 如果axis
为None,则为向量范数(当x
是1-D)或返回矩阵范数(当x是2-D时)。
axis=1表示按行向量处理,求多个行向量的范数
axis=0表示按列向量处理,求多个列向量的范数
axis=None表示矩阵范数。 -
keepdims : 布尔值,可选.是否保持矩阵的二维特性。True表示保持矩阵的二维特性,False相反
返回值
浮点数或ndarray,矩阵或向量的范数。
实例一
import numpy as np
a = np.arange(9)