np.linalg.norm()函数

该博客介绍了numpy库中的np.linalg.norm()函数,用于计算矩阵或向量的范数。函数接受参数x作为输入数组,ord定义范数类型,axis指定计算范数的轴,keepdims决定是否保留维度。通过示例说明了如何计算向量和矩阵的范数。
摘要由CSDN通过智能技术生成

在jupyter notebook 中同时输入多行

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'

np.linalg.norm(x, ord=None, axis=None, keepdims=False)

矩阵或向量范数。此函数能够返回八个不同矩阵规范之一,或无数个向量规范(如下所述)之一,具体取决于在ord参数的值上。

参数

  • x : 输入的数组,必须为一维或者二维
  • ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, 可选
ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm
‘nuc’ nuclear norm
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other sum(abs(x)ord)(1./ord)
  • axis : 可选. 如果axis是整数,则指定要沿其移动的x轴计算向量范数。 如果axis是2元组,则指定保持二维矩阵的轴,以及这些矩阵的矩阵范数计算。 如果axis为None,则为向量范数(当x是1-D)或返回矩阵范数(当x是2-D时)。
    axis=1表示按向量处理,求多个行向量的范数
    axis=0表示按向量处理,求多个列向量的范数
    axis=None表示矩阵范数。

  • keepdims : 布尔值,可选.是否保持矩阵的二维特性。True表示保持矩阵的二维特性,False相反

返回值

浮点数或ndarray,矩阵或向量的范数。

实例一

import numpy as np 
a = np.arange(9)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值