统计学习方法第十六章——主成分分析

博客详细推导了多元统计中协方差矩阵的性质,包括式子(16.3)和(16.4)的证明,涉及矩阵求导和拉格朗日乘数法。通过Python计算了一个相关矩阵的特征值和特征向量,并解释了特征值在方差贡献率中的作用。此外,还展示了如何计算因子负荷量。
摘要由CSDN通过智能技术生成

式子(16.3)和(16.4)的推导

由式子(16.2)和 Σ = cov ⁡ ( x , x ) = E [ ( x − μ ) ( x − μ ) T ] \Sigma=\operatorname{cov}(\boldsymbol{x}, \boldsymbol{x})=E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\right] Σ=cov(x,x)=E[(xμ)(xμ)T]
var ⁡ ( y i ) = E [ ( y i − E ( y i ) ) ( y i − E ( y i ) ) T ] = E [ ( α i T x − α i T μ ) ( α i T x − α i T μ ) T ] = E [ ( α i T ( x − μ ) ) ( α i T ( x − μ ) ) T ] = E [ α i T ( x − μ ) ( x − μ ) T α i ] = α i T E [ ( x − μ ) ( x − μ ) T ] α i = α i T Σ α i \begin{aligned} \operatorname{var}\left(y_{i}\right) &=E\left[\left(y_{i}-E\left(y_{i}\right)\right)\left(y_{i}-E\left(y_{i}\right)\right)^{T}\right] \\ &=E\left[\left(\alpha_{i}^{T} x-\alpha_{i}^{T} \mu\right)\left(\alpha_{i}^{T} x-\alpha_{i}^{T} \mu\right)^{T}\right] \\ &=E\left[\left(\alpha_{i}^{T}(x-\mu)\right)\left(\alpha_{i}^{T}(x-\mu)\right)^{T}\right] \\ &=E\left[\alpha_{i}^{T}(x-\mu)(x-\mu)^{T} \alpha_{i}\right] \\ &=\alpha_{i}^{T} E\left[(x-\mu)(x-\mu)^{T}\right] \alpha_{i} \\ &=\alpha_{i}^{T} \Sigma \alpha_{i} \end{aligned} var(yi)=E[(yiE(yi))(yiE(yi))T]=E[(αiTxαiTμ)(αiTxαiTμ)T]=E[(αiT(xμ))(αiT(xμ))T]=E[αiT(xμ)(xμ)Tαi]=αiTE[(xμ)(xμ)T]αi=αiTΣαi
式子(16.3)得证,同理可以证明式子(16.4)
cov ⁡ ( y i , y j ) = E [ ( y i − E ( y i ) ) ( y j − E ( y j ) ) T ] = E [ ( α i T x − α i T μ ) ( α j T x − α j T μ ) T ] = E [ ( α i T ( x − μ ) ) ( α j T ( x − μ ) ) T ] = E [ α i T ( x − μ ) ( x − μ ) T α j ] = α i T E [ ( x − μ ) ( x − μ ) T ] α j = α i T Σ α j \begin{aligned} \operatorname{cov}(y_{i},y_{j}) &=E\left[\left(y_{i}-E\left(y_{i}\right)\right)\left(y_{j}-E\left(y_{j}\right)\right)^{T}\right] \\ &=E\left[\left(\alpha_{i}^{T} x-\alpha_{i}^{T} \mu\right)\left(\alpha_{j}^{T} x-\alpha_{j}^{T} \mu\right)^{T}\right] \\ &=E\left[\left(\alpha_{i}^{T}(x-\mu)\right)\left(\alpha_{j}^{T}(x-\mu)\right)^{T}\right] \\ &=E\left[\alpha_{i}^{T}(x-\mu)(x-\mu)^{T} \alpha_{j}\right] \\ &=\alpha_{i}^{T} E\left[(x-\mu)(x-\mu)^{T}\right] \alpha_{j} \\ &=\alpha_{i}^{T} \Sigma \alpha_{j} \end{aligned} cov(yi,yj)=E[(yiE(yi))(yjE(yj))T]=E[(αiTxαiTμ)(αjTxαjTμ)T]=E[(αiT(xμ))(αjT(xμ))T]=E[αiT(xμ)(xμ)Tαj]=αiTE[(xμ)(xμ)T]αj=αiTΣαj
式子(16.7)最优化问题推导补充

首先要知道矩阵求导的几个简单法则:
∂ ( x T a ) ∂ x = ∂ ( a T x ) ∂ x = a ∂ ( x T x ) ∂ x = 2 x ∂ ( x T A x ) ∂ x = A x + A T x \frac{\partial\left(\boldsymbol{x}^{T} \boldsymbol{a}\right)}{\partial \boldsymbol{x}}=\frac{\partial\left(\boldsymbol{a}^{T} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=\boldsymbol{a}\\ \frac{\partial\left(\boldsymbol{x^{T}} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=2 \boldsymbol{x}\\ \frac{\partial\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=\boldsymbol{A} \boldsymbol{x}+\mathbf{A}^{T} \boldsymbol{x} x(xTa)=x(aTx)=ax(xTx)=2xx(xTAx)=Ax+ATx
所以拉格朗日函数求导并令其得0为:
原 式 = ∂ α 1 T Σ α 1 ∂ α 1 − λ ∂ α 1 α ∂ α 1 = Σ α 1 + Σ T α 1 − 2 λ α 1 = 2 Σ α 1 − 2 λ α 1 = 0 \begin{aligned} 原式&=\frac{\partial{\alpha_1^T\Sigma\alpha_1}}{\partial{\alpha_1}}-\frac{\lambda\partial{\alpha_1\alpha}}{\partial{\alpha_1}}\\ &=\Sigma\alpha_1+\Sigma^T\alpha_1-2\lambda\alpha_1\\ &=2\Sigma\alpha_1-2\lambda\alpha_1\\ &=0 \end{aligned} =α1α1TΣα1α1λα1α=Σα1+ΣTα12λα1=2Σα12λα1=0

【例16.1】一些计算的补充

首先求相关矩阵R的特征值和特征向量,这边就直接使用python来求解,毕竟所给的数据不太好手动求

import numpy as np

mat = np.array([[1, 0.44, 0.29, 0.33],
                [0.44, 1, 0.35, 0.32],
                [0.29, 0.35, 1, 0.60],
                [0.33, 0.32, 0.60, 1]])

eigenvalue, featurevector = np.linalg.eig(mat)

print("特征值:", np.around(eigenvalue, decimals=2))
print("特征向量:", np.around(featurevector, decimals=3))

image-20220503121352209

可以看到,特征值和书上一样的,但是特征向量不一样,不过这没影响,毕竟特征向量本来就不唯一。

y 1 的 方 差 贡 献 率 为 λ 1 ∑ i = 1 λ i = 2.17 4 = 0.543 y_1的方差贡献率为\frac{\lambda_1}{\sum_{i=1}\lambda_i}=\frac{2.17}{4}=0.543 y1i=1λiλ1=42.17=0.543,同理 y 2 的 方 差 贡 献 率 为 λ 2 ∑ i = 2 λ i = 0.87 4 = 0.218 y_2的方差贡献率为\frac{\lambda_2}{\sum_{i=2}\lambda_i}=\frac{0.87}{4}=0.218 y2i=2λiλ2=40.87=0.218

因子负荷量的计算公式为: ρ ( y k , x i ) = λ k e i k \rho(y_k,x_i)=\sqrt{\lambda_k}e_{ik} ρ(yk,xi)=λk eik

IMG_0429 image-20220503123159268 IMG_0430
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值