常用求极限的方法

常用求极限的方法

1. 两个重要的极限
(1). lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_ { x \rightarrow 0} \frac {\sin x }x = 1 x0limxsinx=1
(2). lim ⁡ x → ∞ ( 1 + 1 x ) x = lim ⁡ x → 0 ( 1 + x ) 1 n = e \lim\limits_ { x \rightarrow \infty } {( 1+ \frac 1x )} ^x = \lim\limits_ {x \rightarrow 0 } {( 1 + x )}^{\frac 1n} = e xlim(1+x1)x=x0lim(1+x)n1=e
例子:求极限 lim ⁡ x → ∞ ( x + 1 x − 1 ) x \displaystyle\lim\limits_{ x \rightarrow \infty }{ \left ( \frac {x+1} {x-1} \right ) }^x xlim(x1x+1)x

解: lim ⁡ x → ∞ ( x + 1 x − 1 ) x = lim ⁡ x → ∞ ( 1 + 2 x − 1 ) x = lim ⁡ x → ∞ [ ( 1 + 1 x − 1 2 ) x − 1 2 ( 1 + 2 x − 1 ) 1 2 ] 2 = e 2 \lim\limits_{ x \rightarrow \infty }{\displaystyle \left ( \frac {x+1} {x-1} \right ) }^x \\ = \lim\limits_{x \rightarrow \infty } {\displaystyle \left ( 1 + \frac 2 {x-1} \right )^x }\\ = \lim\limits_ {x \rightarrow \infty } { \left [ \left ( 1 + \displaystyle\frac 1{\displaystyle\frac {x-1} 2 } \left ) ^ {\displaystyle\frac {x-1} 2} \right (1 + \frac 2 {x-1} \right ) ^{\displaystyle\frac 12} \right ]^2 }\\ = \displaystyle e^2 xlim(x1x+1)x=xlim(1+x12)x=xlim1+2x112x11+x12212=e2

2. 等价无穷小
x → 0 x \rightarrow 0 x0 时,
sin ⁡ x \sin x sinx ~ x
tan ⁡ x \tan x tanx ~ x ln ⁡ ( x + 1 ) x \ln (x + 1) xln(x+1)
a x a^x ax - 1 ~ x ln ⁡ a x \ln a xlna
( 1 + b x ) a − 1 ( 1+ bx )^ a - 1 (1+bx)a1 ~ a b x abx abx
x − sin ⁡ x x - \sin x xsinx ~ x 3 6 \displaystyle\frac {x^3 }6 6x3
tan ⁡ x − x \tan x - x tanxx ~ x 3 3 \displaystyle\frac {x^3 }3 3x3
tan ⁡ x − sin ⁡ x \tan x - \sin x tanxsinx ~ x 3 2 \displaystyle\frac {x ^3}2 2x3
注意:等价无穷小一般只在乘除中使用
(隐藏boss):加减中可以整体替换,但不能单独替换。
前提条件:
lim ⁡ α ′ β ′ ̸ = − 1 \displaystyle\lim \frac{\alpha '}{\beta '} \not= -1 limβα̸=1 \quad α + β \alpha + \beta α+β ~ α ′ + β ′ \alpha '+ \beta ' α+β
即替换后的结果没有抵消
例子:求 lim ⁡ x → 0 tan ⁡ x + sin ⁡ x 3 x \displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x + \sin x} {3x} x0lim3xtanx+sinx
解: lim ⁡ x → 0 tan ⁡ x + sin ⁡ x 3 x = lim ⁡ x → 0 x + x 3 x = 2 3 \displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x + \sin x} {3x}\\ = \lim\limits_ {x \rightarrow 0 } \frac { x + x} {3x}\\ = \frac 23 x0lim3xtanx+sinx=x0lim3xx+x=32
这里把 tan ⁡ x + sin ⁡ x \tan x + \sin x tanx+sinx替换成 x + x x + x x+x后,得到 2 x 2x 2x,此时结果没有抵消,可以使用。
例子:求 lim ⁡ x → 0 tan ⁡ x − sin ⁡ x 3 x \displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x - \sin x} {3x} x0lim3xtanxsinx
解: lim ⁡ x → 0 tan ⁡ x − sin ⁡ x 3 x = lim ⁡ x → 0 x 3 2 3 x = 0 \displaystyle\lim\limits_ {x \rightarrow 0} \frac {\tan x - \sin x} {3x}\\ = \displaystyle\lim\limits_ {x \rightarrow 0} \frac {\displaystyle\frac {x^3} 2} {3x}\\ = 0 x0lim3xtanxsinx=x0lim3x2x3=0
如果这里把 tan ⁡ x − sin ⁡ x \tan x - \sin x tanxsinx替换成 x − x x - x xx后,式子抵消,得到 0 的结果,所以不能替换
3.利用夹逼性定理求极限
例子:求 ( 1 + n n 2 (\displaystyle\frac {1+n}{n^2} (n21+n) 的极限
1 n &lt; 1 + n n 2 ≤ 2 n n 2 = 2 n \frac 1n &lt; \frac {1+n} {n^2} \leq \frac {2n} {n^2} = \frac2n n1<n21+nn22n=n2
而 1 n → 0 , 2 n → 0 , 由 夹 逼 准 则 得 而\frac 1n \rightarrow 0, \frac 2n \rightarrow 0,由夹逼准则得 n10,n20,
lim ⁡ n → n 2 1 + n n 2 = 0 \lim\limits_ {n \rightarrow n^2} \frac{1+n } {n^2}= 0 nn2limn21+n=0

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值