知识图谱相关理论

一、定义

知识图谱(knowledge graph)是以图的形式表现客观世界中的实体(概念、人、事物)及其之间关系的知识库。

本体(ontology)是描述概念与概念间的关系,是大多数知识图谱的模式层, 是知识图谱的概念模型和逻辑基础。

二、构成

1、模式层

模式层对数据层进行规范约束。多采用本体作为知识图谱的模式层, 借助本体定义的规则和公理约束知识图谱的数据层.。也可将知识图谱视为实例化了的本体, 知识图谱的数据层是本体的实例.。如果不需支持推理, 则知识图谱(大多是自底向上构建的)可以只有数据层而没有模式层.。在知识图谱的模式层, 节点表示本体概念, 边表示概念间的关系。

2、数据层

在数据层, 事实以“实体-关系-实体”或“实体-属性-属性值”的三元组存储, 形成一个图状知识库。 其中, 实体是知识图谱的基本元素, 指具体的人名、组织机构名、地名、日期、时间等.。关系是两个实体之间的语义关系, 是模式层所定义关系的实例. 属性是对实体的
说明, 是实体与属性值之间的映射关系.。属性可视为实体与属性值之间的hasValue关系, 从而也转化为以“实体-关系-实体”的三元组存储。在知识图谱的数据层, 节点表示实体, 边表示实体间关系或实体的属性。

 

### 关于知识图谱相关书籍 对于希望深入了解知识图谱及其应用的人来说,有许多优秀的资源可供选择。以下是几本推荐的知识图谱相关书籍: #### 1. **《构建知识图谱》** 这本书由国内知名专家撰写,全面介绍了知识图谱的基础理论和技术实现路径。书中不仅涵盖了知识表示、推理机制等内容,还探讨了如何利用这些技术来创建实际可用的知识库。 #### 2. **《Google's Knowledge Graph: Things Not Strings》** 此书深入解析了谷歌推出的Knowledge Graph项目背后的技术原理和发展历程[^3]。通过具体案例展示了搜索引擎是如何从简单的字符串匹配转向理解实体间的关系网络,从而提供更加精准的信息检索服务。 #### 3. **《Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL》** 虽然本书主要聚焦语义网领域,但对于想要掌握知识图谱建模技巧的学习者来说非常有价值。它详细讲解了RDF(S) 和OWL这两种核心标准,并提供了大量实用的例子帮助读者更好地理解和运用它们。 #### 4. **《Graph Databases: New Opportunities for Connected Data》** 随着图形数据库成为支撑大规模复杂关系数据管理的重要工具之一,《Graph Databases》一书则专注于介绍这类新型存储系统的架构特点以及应用场景。这对于研究涉及多节点关联分析的任务(如社交网络挖掘)具有重要意义。 #### 5. **《Mining Massive Datasets》** 尽管这不是一本专门讨论知识图谱的作品,但在处理海量数据集并从中抽取有用信息方面给出了很多有价值的见解。特别是当面对互联网级别的大数据环境时,书中提到的一些高效算法和策略同样适用于优化知识图谱的构建过程。 ```python # 示例代码展示如何使用Python获取图书列表 import requests def get_books(topic): url = f"https://api.example.com/books?topic={topic}" response = requests.get(url) if response.status_code == 200: return response.json() else: raise Exception("Failed to fetch data") books = get_books('knowledge graph') for book in books: print(f"- {book['title']}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值