正交曲面系下梯度散度旋度公式速记

正交曲面系下梯度散度旋度公式速记

1. 回忆正交曲面系的度量系数 h i h_i hi

记每种坐标系中不同的3个分量分别为 u 1 u_{1} u1 u 2 u_{2} u2 u 3 u_{3} u3,其度量系数分别为

坐标系 u 1 u_{1} u1 u 2 u_{2} u2 u 3 u_{3} u3
x y z xyz xyz 1 1 1 1 1 1 1 1 1
r θ z r\theta z rθz 1 1 1 r r r 1 1 1
r θ ϕ r\theta \phi rθϕ 1 1 1 r r r r sin ⁡ θ r \sin\theta rsinθ

2. 沿每个坐标系的微分长度 d l i = h i d u i \mathrm{d}l_i=h_i\mathrm{d}u_i dli=hidui,其微分长度分别为

坐标系 u 1 u_{1} u1 u 2 u_{2} u2 u 3 u_{3} u3
x y z xyz xyz d x \mathrm{d}x dx d y \mathrm{d}y dy d z \mathrm{d}z dz
r θ z r\theta z rθz d r \mathrm{d}r dr r d θ r\mathrm{d}\theta rdθ d z \mathrm{d}z dz
r θ ϕ r\theta \phi rθϕ d r \mathrm{d}r dr r d θ r\mathrm{d}\theta rdθ r sin ⁡ θ d ϕ r \sin\theta\mathrm{d}\phi rsinθdϕ

3. 只需要记的公式(只是简记 数学上会有些冲突)

∇ Φ = ∑ i e u i ∂ Φ ∂ l i \nabla\Phi=\sum_{i}\bm{{e_{u_i}}}\frac{\partial \Phi}{\partial l_i} Φ=ieuiliΦ

∇ ⋅ A ⃗ = ∑ i ≠ j ≠ k ∂ ( A i h j h k ) ∂ ( l i h j h k ) \nabla \cdot \vec{\bm{A}}=\sum_{i\not =j\not =k}\frac{\partial {(A_ih_jh_k)}}{\partial (l_ih_jh_k)} A =i=j=k(lihjhk)(Aihjhk) ∂ ( A i h j h k ) \partial (A_ih_jh_k) (Aihjhk) 中的 h j h k h_jh_k hjhk看成是与 u i u_i ui无关的常数(例如 h j = r h_j=r hj=r u i u_i ui r r r

∇ × A ⃗ = ∣ e u 1 e u 2 e u 3 ∂ ∂ l 1 ∂ ∂ l 2 ∂ ∂ l 3 A 1 A 2 A 3 ∣ \nabla \times \vec{\bm{A}}=\left| \begin{matrix} \bm{{e_{u_1}}} & \bm{{e_{u_2}}} & \bm{{e_{u_3}}} \\ \frac{\partial }{\partial l_1} & \frac{\partial }{\partial l_2} & \frac{\partial }{\partial l_3} \\ A_1 & A_2 & A_3 \end{matrix} \right| ×A =eu1l1A1eu2l2A2eu3l3A3
∇ 2 Φ = ∇ ⋅ ( ∇ Φ ) = ∑ i ≠ j ≠ k ∂ ( h j h k ∂ Φ ∂ l i ) ∂ ( l i h j h k ) = ∑ i ≠ j ≠ k ∂ ∂ ( l i h j h k ) ( h j h k ∂ Φ ∂ l i ) \nabla^2 \Phi =\nabla \cdot( \nabla \Phi)=\sum_{i\not =j\not =k}\frac{\partial {(h_jh_k\frac{\partial\Phi}{\partial l_i})}}{\partial (l_ih_jh_k)}=\sum_{i\not =j\not =k}\frac{\partial}{\partial (l_ih_jh_k)}(h_jh_k\frac{\partial\Phi}{\partial l_i}) 2Φ=(Φ)=i=j=k(lihjhk)(hjhkliΦ)=i=j=k(lihjhk)(hjhkliΦ)

4. 一些变形(把 d l i = h i d u i \mathrm{d}l_i=h_i\mathrm{d}u_i dli=hidui带入)

∇ Φ = ∑ i e u i ∂ Φ h i ∂ u i \nabla\Phi=\sum_{i}\bm{{e_{u_i}}}\frac{\partial \Phi}{h_i\partial u_i} Φ=ieuihiuiΦ

∇ ⋅ A ⃗ = 1 h 1 h 2 h 3 ∑ i ≠ j ≠ k ∂ ( A i h j h k ) ∂ u i \nabla \cdot \vec{\bm{A}}=\frac{1}{h_1h_2h_3}\sum_{i\not =j\not =k}\frac{\partial {(A_ih_jh_k)}}{\partial u_i} A =h1h2h31i=j=kui(Aihjhk)

∇ × A ⃗ = ∣ e u 1 e u 2 e u 3 ∂ h 1 ∂ u 1 ∂ h 2 ∂ u 2 ∂ h 3 ∂ u 3 A 1 A 2 A 3 ∣ = 1 h 1 h 2 h 3 ∣ h 1 e u 1 h 2 e u 2 h 3 e u 3 ∂ ∂ u 1 ∂ ∂ u 2 ∂ ∂ u 3 h 1 A 1 h 2 A 2 h 3 A 3 ∣ \nabla \times \vec{\bm{A}}=\left| \begin{matrix} \bm{{e_{u_1}}} & \bm{{e_{u_2}}} & \bm{{e_{u_3}}} \\ \frac{\partial }{h_1\partial u_1} & \frac{\partial }{h_2\partial u_2} & \frac{\partial }{h_3\partial u_3} \\ A_1 & A_2 & A_3 \end{matrix} \right|=\frac{1}{h_1h_2h_3}\left| \begin{matrix} h_1\bm{{e_{u_1}}} &h_2 \bm{{e_{u_2}}} & h_3\bm{{e_{u_3}}} \\ \frac{\partial }{\partial u_1} & \frac{\partial }{\partial u_2} & \frac{\partial }{\partial u_3} \\ h_1A_1 & h_2A_2 & h_3A_3 \end{matrix} \right| ×A =eu1h1u1A1eu2h2u2A2eu3h3u3A3=h1h2h31h1eu1u1h1A1h2eu2u2h2A2h3eu3u3h3A3
∇ 2 Φ = 1 h 1 h 2 h 3 ∑ i ≠ j ≠ k ∂ ∂ u i ( h j h k h i ∂ Φ ∂ u i ) \nabla^2 \Phi =\frac{1}{h_1h_2h_3}\sum_{i\not =j\not =k}\frac{\partial }{\partial u_i}{(\frac{h_jh_k}{h_i}\frac{\partial\Phi}{\partial u_i})} 2Φ=h1h2h31i=j=kui(hihjhkuiΦ)

5.例子

比如我要求球坐标的 Φ \Phi Φ函数的梯度

∇ Φ = ∑ i e u i ∂ Φ ∂ l i = ∑ i e u i ∂ Φ h i ∂ u i \nabla\Phi=\sum_{i}\bm{{e_{u_i}}}\frac{\partial \Phi}{\partial l_i}=\sum_{i}\bm{{e_{u_i}}}\frac{\partial \Phi}{h_i\partial u_i} Φ=ieuiliΦ=ieuihiuiΦ

注意到 [ h 1 h 2 h 3 ] = [ 1 r r sin ⁡ θ ] \begin{bmatrix}h_1 &h_2 &h_3\end{bmatrix}=\begin{bmatrix}1 &r &r\sin\theta\end{bmatrix} [h1h2h3]=[1rrsinθ],带入就求出

∇ Φ = e r ∂ Φ ∂ r + 1 r e θ ∂ Φ ∂ θ + 1 r sin ⁡ θ e ϕ ∂ Φ ∂ ϕ \nabla\Phi=\bm{{e_{r}}}\frac{\partial \Phi}{\partial r}+\frac{1}{r}\bm{{e_{ \theta}}}\frac{\partial \Phi}{\partial \theta}+\frac{1}{ r\sin\theta}\bm{{e_{\phi}}}\frac{\partial \Phi}{\partial \phi} Φ=errΦ+r1eθθΦ+rsinθ1eϕϕΦ

其他的同理,速记法!

6. 参考文献

电磁场与电磁波(第二版) 杨儒贵

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值