线性代数【概念,结论】

相似

如果两个同阶方阵A,B满足
A = P − 1 B P A=P^{-1}B{P} A=P1BP
则称,A,B相似。

①相似的矩阵具有相同的特征多项式


对角化

如果存在可逆阵P,方阵A,使得:
A = P d i a g ( λ 1 , λ 2 , ⋯   , λ n ) P − 1 A=Pdiag(\lambda_1,\lambda_2,\cdots,\lambda_n)P^{-1} A=Pdiag(λ1,λ2,,λn)P1
则称,A可对角化。


正交阵

P T = P − 1 P^T=P^{-1} PT=P1
它的每一列都是标准正交基

①正交阵的特征值的模是1

②奇数阶正交阵一定有一个特征值是1

证明过程


实对称阵

P T = P ( 都 是 实 数 ) P^T=P(都是实数) PT=P
它的特征向量组正交


施密特正交化

β i = α i − ∑ j = 1 i ( [ α i , β j ] [ β j , β j ] β j ) \beta_i=\alpha_i-\sum_{j=1}^{i}(\frac{[\alpha_i,\beta_j]}{[\beta_j,\beta_j]}\beta_j ) βi=αij=1i([βj,βj][αi,βj]βj)


正交标准型

按对角化的步骤,求出P,然后:

  1. 施密特正交化
  2. 单位化

此时, P是正交阵, P T = P − 1 P^T=P^{-1} PT=P1
x = P y x=Py x=Py,代入:
x T A x = ( P y ) T A ( P y ) = y T ( P T A P ) y = y T D y x^TAx=(Py)^TA(Py)=y^{T}(P^TAP)y=y^TDy xTAx=(Py)TA(Py)=yT(PTAP)y=yTDy


合同

如果两个同阶 实对称 方阵A,B,(可逆阵P)满足
A = P T B P A=P^{T}B{P} A=PTBP
则称,A,B相似。

①合同的矩阵正惯性指数都相等


正定二次型

判断方法:

∀ x , x T A x > 0 \forall x,x^TAx>0 x,xTAx>0
顺序主子式都大于0

合同的方阵具有相同的正定性


特征值

①迹= λ 1 + λ 2 + ⋯ + λ n \lambda_1+\lambda_2+\cdots+\lambda_n λ1+λ2++λn

如果 λ \lambda λ A A A的特征值,那么B=f(A)对应的特征值是:

B λ B \lambda_B λB
∏ i = 1 m ( A i + k i E ) 【 A i = ∑ I = 1 n A a I 】 \prod_{i=1}^{m}(A_i+k_iE)【A_i=\sum_{I=1}^nA^{a_I}】 i=1m(Ai+kiE)Ai=I=1nAaI ∏ i = 1 m ( λ i + k i ) 【 λ i = ∑ I = 1 n λ a I 】 \prod_{i=1}^{m}(\lambda _i+k_i)【\lambda _i=\sum_{I=1}^n\lambda^{a_I}】 i=1m(λi+ki)λi=I=1nλaI
A − 1 A^{-1} A1 1 λ \frac{1}{\lambda} λ1

特征值的重数应该等于特征向量的重数


r ( A B ) ≥ r ( A ) + r ( B ) − n r(AB)\ge r(A)+r(B)-n r(AB)r(A)+r(B)n r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\begin{cases} n,r(A)=n\\ 1,r(A)=n-1\\ 0,r(A)< n-1 \end{cases} r(A)=n,r(A)=n1,r(A)=n10,r(A)<n1 r ( [ A C B 0 ] ) ≥ r ( [ 0 C B 0 ] ) \begin{aligned} r(\begin{bmatrix} A &C \\ B &0 \end{bmatrix})\ge r(\begin{bmatrix} 0 &C \\ B &0 \end{bmatrix}) \end{aligned} r([ABC0])r([0BC0]) 若 A B = 0 , r ( A ) + r ( B ) ≤ n 若AB=0,r(A)+r(B) \le n AB=0r(A)+r(B)n


要求掌握的图形
形状方程
母线平行于z轴的柱面没有z
旋转曲面
椭圆抛物面 z = x 2 2 p + y 2 2 q z=\frac{x^2}{2p}+\frac{y^2}{2q} z=2px2+2qy2
双曲抛物面 z = − x 2 2 p + y 2 2 q z=-\frac{x^2}{2p}+\frac{y^2}{2q} z=2px2+2qy2
单叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1
双叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1 a2x2+b2y2c2z2=1

实对称阵

实对称阵一定可以对角化。所以

一定存在n个特征向量


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值