线性代数基本结论要点

1.线性方程组

  1.  若方程组中,第k个方程的前k-1个变量的系数均为零,并且x_k(k=1,2,\cdots,n)的系数不为0,则称该方程组为严格三角形的.
  2. 初等行运算:
    1. 交换两行
    2. 以非零实数乘以某行
    3. 将某行替换为它与其他行的倍数的和
  3. 如果n\times n的线性方程组可以化简为严格的三角形式,则它将有一个唯一解,并且可以通过三角形方程组的回代法球的,化简过程可以堪称一个n-1步的算法
    1. 第一步,从矩阵的第一列所有非零元中选择一个作为主元,包含主元的元素称为主行,如果需要,交换行使得主行成为第一行,然后其余的n-1行减去主行的某个倍数,使得从第二到第n行中地一个元素为0.
    2. 第二步,从矩阵的第二行到第n选择第二列的一个非零元作为主元,将包含主元的行作为主行,并和矩阵的第二行交换作为新的主行,然后,余下的n-2行减去主行的某个倍数,消去第二列中主元下面的所有元.
    3. 第三部,从第三列到第n-1列重复相同的过程,直到所有对角元素下面的元素全部变为0
  4. 利用第三条表达的行运算,将线性方程组的增广矩阵华为行阶梯的过程称为"高斯消元法".
  5. 注意,在第二步中,第一行和第一列的元素并不发生变化,进行第三步时,前两行以及前两列的元素保持不变,以此类推,在每一个步骤中,方程组的维数实际上有效的减少了1.
  6. 如果能像上述方式进行消元,n-1步之后,即可得到一个等价的严格三角形方程组,然而,上述过车给你中欧给你,如果在任何一步所有可能的选则主元均为0,此时该过程就将在这一步停止,这个时候,化成的矩阵就是提醒或者阶梯形的,而非三角形.
  7. 若一个线性方程组中方程的个数多于未知量的个数,则称其为超定的.超定方程组通常是(不总是)不相容的.
  8. 反之,如果方程的个数小于未知量的个数,则方程组称为亚定的,亚定方程组有可能不相容,但通常都是相容的,相容的情况下,有无穷多组解.亚定方程组不可能只有唯一解(要么无解,要么无穷多解)
  9. 例子:

     第一步:

       \begin{bmatrix} x & x & x& x& x\\ x & x& x& x&x \\ x& x& x & x&x \\ x& x & x & x & x \end{bmatrix}=>\begin{bmatrix} x & x & x& x& x\\ 0 & x& x& x&x \\ 0& x& x & x&x \\ 0& x & x & x & x \end{bmatrix}

  第二步:

       \begin{bmatrix} x & x & x& x& x\\ 0 & x& x& x&x \\ 0& x& x & x&x \\ 0& x & x & x & x \end{bmatrix}=>\begin{bmatrix} x & x & x& x& x\\ 0 & x& x& x&x \\ 0& 0& x & x&x \\ 0& 0 & x & x & x \end{bmatrix}

   第三步:

     \begin{bmatrix} x & x & x& x& x\\ 0 & x& x& x&x \\ 0& 0& x & x&x \\ 0& 0 & x & x & x \end{bmatrix}=>\begin{bmatrix} x & x & x& x& x\\ 0 & x& x& x&x \\ 0& 0& x & x&x \\ 0& 0 & 0 & x & x \end{bmatrix}


2.矩阵


3.线性变换

  1. 任何将n维向量空间映射到m维向量空间W的线性变换L可以表示为一个m\times n的矩阵A,因此,可以用矩阵A来代替映射L,若线性变换L将V映射到它自身(映射前后没有亏秩),则表示L的矩阵将依赖于V中有序基的选择,因此,L可表示为依赖V的一个有序基的矩阵A,并且在其它有序基下表示为其它的矩阵B,A和B相似。
  2. 一个向量空间V映射到向量空间W的映射L, 如果对所有v_1,v_2 \in V,以及所有的标量\alpha , \beta,  L(\alpha v_1 + \beta v_2) = \alpha L(v_1) + \beta L(v_2), 一个从向量空间V到向量空间W的映射L记作: L:V\rightarrow W, 如果向量空间V和W是相同的,称为线性变换L:V\rightarrow VV上的线性算子(linear operator), 因此,一个线性算子是一个向量空间到其自身的线性变换。
  3. 如果A为任何m\times n阶矩阵,可以定义一个从R^nR^m的线性变换L_A,对于每一个\vec{x}\in R^nL_A(\vec{x}) = A\vec{x}

         A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n}\\ a_{21}& a_{22}& \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} \quad \vec{x}=\begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix} \quad L_{A}(\vec{x}) = \begin{bmatrix} l_1\\ l_2\\ \vdots \\ l_m \end{bmatrix}

        所以:

        \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n}\\ a_{21}& a_{22}& \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix}= \begin{bmatrix} l_1\\ l_2\\ \vdots \\ l_m \end{bmatrix}

            

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值