【huggingface模型】huggingface模型的默认下载/加载位置

在运行Python脚本加载模型时,HuggingFace会在当前路径下创建一个名为.cache的隐藏文件夹,例如在/root/.cache/huggingface/hub/中,存储了如THUDM的ChatGLM-6b模型的副本,以便加速后续的模型加载和使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在你运行加载模型的py文件的路径下,会有一个隐藏文件.cache, 如:

/root/.cache/huggingface/hub/models--THUDM--chatglm-6b/*

在这里插入图片描述

### 修改 Hugging Face 模型下载路径 为了防止大型模型占用过多 C 盘空间,默认情况下,Hugging Face 的模型会保存在 `C:\Users\<用户名>\.cache\huggingface\hub` 文件夹下。可以通过配置环境变量的方式改变这一默认行为。 #### 方法一:通过设置环境变量更改缓存目录 可以在 Python 脚本中直接设定环境变量来调整模型的存储位置: ```python import os os.environ['HF_HOME'] = 'D:\\custom_path\\huggingface' # 将 D:\\custom_path 替换成期望的目标路径 ``` 此方式适用于临时性的项目需求,在脚本执行期间有效[^3]。 #### 方法二:永久性修改全局环境变量 对于希望长期生效的情况,则建议编辑系统的环境变量列表,添加名为 `HF_HOME` 或者更具体的 `HF_HUB_CACHE` 来指向新的目标文件夹。这一步骤通常涉及操作系统级别的设置操作,具体步骤因不同版本的操作系统而异。 当仅需针对特定模型实例自定义其加载路径时,还可以利用库函数中的参数选项实现: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name_or_path = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, cache_dir="E:/models/distilbert/") model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, cache_dir="E:/models/distilbert/") ``` 上述代码片段展示了如何为单个模型指定了独立于其他资源之外的新缓存位置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TiSV工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值