机器学习与深度学习

神经网络的结构:

说在前边的:输入层、输出层节点固定,隐藏层可以自由设置,重要的不是神经元而是连接线,其代表的是权重,需经过训练得到。

神经网络的本质:通过参数与激活函数拟合特征与目标之间真实关系,实现一个神经网络最需要的是线性代数库。

神经元模型MP:神经网络基础。但是权重的值是预先设置的,不能学习。

神经元可以看作一个计算与存储单元。函数sgn是取符号函数,当输入大于0时,输出1,否则输出0。

可以达到的效果:有四个物体找到其中三个属性(特征),可以预测第四个(目标)

感知机:第一个可以学习的神经网络(一个计算层)

与MP的区别,将输入也看做神经元节点,有输入层、输出层,当计算结果是向量时,输出层有多个节点。

效果:类似一个逻辑回归模型,可以做线性分类任务。对N维数据,做N-1维划分

反向传播(Backpropagation,BP):两个计算层

优点:两个计算层的计算量

特点:两个权重矩阵,除了输出层以外,有一个偏置单元。平滑函数sigmoid作为函数g,也称作激活函数(active function)。

效果:参数矩阵的作用就是使得数据的原始坐标空间从线性不可分,转换成了线性可分,对原始的数据进行了一个空间变换,然后输出层的决策分界划出了一个线性分类分界线,对其进行分类。

训练:样本的预测目标与真实目标直接有一个损失,对参数进行训练的目的就是使得损失尽量小,即转化为最优化问题,如何最优化参数,多利用梯度下降算法,每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,重复到梯度接近零时截止。为减小计算量,需要用反向传播,先计算输出层的,接着是参数矩阵,中间层,第一个参数矩阵的梯度,最后是输入层的梯度,得到两个参数矩阵梯度。最优化问题是训练的一部分,最终要达到在测试集也也具有很好的效果(泛化),使用正则化方法达到。

多层神经网络(深度学习)

效果:更深入的特征描述,更强的函数模拟能力,从而得到更好的分类等能力。

训练主题:优化、泛化ReLU函数在训练多层神经网络时,更容易收敛,并且预测性能更好。

参考文章:http://t.csdnimg.cn/ASUim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值