项目实训(十一)--逻辑回归

项目实训(十一)

本文记录在项目中的逻辑回归使用

逻辑回归

Logistic回归是众多分类算法中的一员。通常,Logistic回归用于二分类问题,例如预测明天是否会下雨。当然它也可以用于多分类问题。
假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归,如下图所示:在这里插入图片描述
Logistic回归是分类方法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。
所以要想了解Logistic回归,我们必须先看一看Sigmoid函数 ,我们也可以称它为Logistic函数。
下面这张图片,为我们展示了Sigmoid函数的样子。
在这里插入图片描述

z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到[0,1]的映射,这样我们的数据集([x0,x1,…,xn]),不管是大于1或者小于0,都可以映射到[0,1]区间进行分类。hθ(x)给出了输出为1的概率。比如当hθ(x)=0.7,那么说明有70%的概率输出为1。输出为0的概率是输出为1的补集,也就是30%。

如果我们有合适的参数列向量θ([θ0,θ1,…θn]^T),以及样本列向量x([x0,x1,…,xn]),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就可以说样本是正样本,否则样本是负样本。

举个例子,对于"垃圾邮件判别问题",对于给定的邮件(样本),我们定义非垃圾邮件为正类,垃圾邮件为负类。我们通过计算出的概率值即可判定邮件是否是垃圾邮件。

那么问题来了!如何得到合适的参数向量θ?

根据sigmoid函数的特性,我们可以做出如下的假设:

在这里插入图片描述

式即为在已知样本x和参数θ的情况下,样本x属性正样本(y=1)和负样本(y=0)的条件概率。理想状态下,根据上述公式,求出各个点的概率均为1,也就是完全分类都正确。但是考虑到实际情况,样本点的概率越接近于1,其分类效果越好。比如一个样本属于正样本的概率为0.51,那么我们就可以说明这个样本属于正样本。另一个样本属于正样本的概率为0.99,那么我们也可以说明这个样本属于正样本。但是显然,第二个样本概率更高,更具说服力。我们可以把上述两个概率公式合二为一:

在这里插入图片描述

合并出来的Loss,我们称之为损失函数(Loss Function)。当y等于1时,(1-y)项(第二项)为0;当y等于0时,y项(第一项)为0。为s了简化问题,我们对整个表达式求对数,(将指数问题对数化是处理数学问题常见的方法):
在这里插入图片描述

这个损失函数,是对于一个样本而言的。给定一个样本,我们就可以通过这个损失函数求出,样本所属类别的概率,而这个概率越大越好,所以也就是求解这个损失函数的最大值。既然概率出来了,那么最大似然估计也该出场了。假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积,便可得到如下公式:
在这里插入图片描述

其中,m为样本的总数,y(i)表示第i个样本的类别,x(i)表示第i个样本,需要注意的是θ是多维向量,x(i)也是多维向量。

综上所述,满足J(θ)的最大的θ值即是我们需要求解的模型。

怎么求解使J(θ)最大的θ值呢?因为是求最大值,所以我们需要使用梯度上升算法。如果面对的问题是求解使J(θ)最小的θ值,那么我们就需要使用梯度下降算法。面对我们这个问题,如果使J(θ) := -J(θ),那么问题就从求极大值转换成求极小值了,使用的算法就从梯度上升算法变成了梯度下降算法,它们的思想都是相同的,学会其一,就也会了另一个。本文使用梯度上升算法进行求解。

梯度上升

用迭代的方法来做。就像爬坡一样,一点一点逼近极值。这种寻找最佳拟合参数的方法,就是最优化算法。爬坡这个动作用数学公式表达即为:
在这里插入图片描述
其中,α为步长,也就是学习速率,控制更新的幅度。

一般过程

收集数据:采用任意方法收集数据。
准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
分析数据:采用任意方法对数据进行分析。
训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
测试算法:一旦训练步骤完成,分类将会很快。
使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数,就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

应用

在项目中使用了sklearn库,直接使用里面的函数实现逻辑回归分类器

from sklearn.linear_model import LogisticRegression
import numpy as np
import random

# Logistic回归是一种二分类算法那,它利用的是Sigmoid函数阈值在[0,1]这个特性。
# Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。
# 找到参数向量θ,实现SIGMOD分类
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m, n = np.shape(dataMatrix)  # 返回dataMatrix的大小。m为行数,n为列数。
    weights = np.ones(n)  # 参数初始化										#存储每次更新的回归系数
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4 / (1.0 + j + i) + 0.01  # 降低alpha的大小,每次减小1/(j+i)。
            randIndex = int(random.uniform(0, len(dataIndex)))  # 随机选取样本
            h = sigmoid(sum(dataMatrix[randIndex] * weights))  # 选择随机选取的一个样本,计算h
            error = classLabels[randIndex] - h  # 计算误差
            weights = weights + alpha * error * dataMatrix[randIndex]  # 更新回归系数
            del (dataIndex[randIndex])  # 删除已经使用的样本
    return weights  # 返回



def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)  # 转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()  # 转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)  # 返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.01  # 移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500  # 最大迭代次数
    weights = np.ones((n, 1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)  # 梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()  # 将矩阵转换为数组,并返回

def colicTest():
    frTrain = open('horseColicTraining.txt')  # 打开训练集
    frTest = open('horseColicTest.txt')  # 打开测试集
    trainingSet = [];
    trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(len(currLine) - 1):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[-1]))
    trainWeights = stocGradAscent1(np.array(trainingSet), trainingLabels, 500)  # 使用改进的随即上升梯度训练
    errorCount = 0;
    numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(len(currLine) - 1):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(np.array(lineArr), trainWeights)) != int(currLine[-1]):
            errorCount += 1
    errorRate = (float(errorCount) / numTestVec) * 100  # 错误率计算
    print("测试集错误率为: %.2f%%" % errorRate)


def classifyVector(inX, weights):
    prob = sigmoid(sum(inX * weights))
    if prob > 0.5:
        return 1.0
    else:
        return 0.0

def loadDataSet(vecfileName, labelfileName, num1, num2):
    dataMat = [];
    labelMat = []
    fr = open(vecfileName)
    for line in fr.readlines()[num1:num2]:
        tmp_vec = eval(line[5:-2])
        dataMat.append(tmp_vec)
    fr = open(labelfileName)
    for line in fr.readlines()[num1:num2]:
        tmp_label = int(line[2])
        labelMat.append(tmp_label)

    return dataMat, labelMat

def loadDataSet2(fileName ,num1, num2):
    dataMat = [];
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines()[num1:num2]:
        print(line)
    return dataMat, labelMat

def colicSklearn():
    trainingSet ,trainingLabels = loadDataSet("vec_clean.csv","label_clean.csv",0,9000)
    testSet ,testLabels = loadDataSet("vec_clean.csv","label_clean.csv",9001,9999)
    classifier = LogisticRegression(solver='sag', max_iter=800,multi_class='multinomial').fit(trainingSet, trainingLabels)
    test_accurcy = classifier.score(testSet, testLabels) * 100
    print('正确率:%f%%' % test_accurcy)
    
if __name__ == '__main__':
    colicSklearn()

调参之后,对于项目中的文本三分类准确率可以达到70%以上

参考

https://cuijiahua.com/blog/2017/11/ml_6_logistic_1.html
https://cuijiahua.com/blog/2017/11/ml_7_logistic_2.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值