【迁移攻击笔记】动量逻辑集成!MI-FGSM!Boosting Adversarial Attacks with Momentum

1.更新策略选择

①optimization-based和多步方法IGSM:成功率高;转移性低。(可能“过拟合”or陷入局部最优)
②单步方法FGSM: 成功率低;转移性高。
所以用: MI-FGSM
在这里插入图片描述

2.集成方式选择

MI-FGSM还不够,得利用集成网络来进一步提高成功率。利用的方式有3种待测试:
①输入softmax的logits
在这里插入图片描述
②softmax输出的prediciton
在这里插入图片描述
③计算得到的loss
在这里插入图片描述
最终通过测试选择输入softmax的logits
在这里插入图片描述
在这里插入图片描述

3.实验

单网络:
①I-FGSM与MI-FGSM
在这里插入图片描述
②动量因子μ
在这里插入图片描述
③扰动范围:
在这里插入图片描述
④总结果:
在这里插入图片描述
集成网络:
在这里插入图片描述
在这里插入图片描述

希望路过这儿的你可以关注我一下~~我会定期更新一系列阅读笔记和总结,加入自己的见解和思路,希望能对你有用~

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
FGSM(Fast Gradient Sign Method)是一种用于对抗样本生成的攻击方法。它通过在原始输入数据上添加一个微小的幅度扰动,以便欺骗机器学习模型。FGSM的思想是利用梯度信息来计算出对抗样本。具体来说,它计算出使损失函数最大化的输入扰动,然后将该扰动添加到原始输入中,从而生成对抗样本。 I-FGSM(Iterative Fast Gradient Sign Method)是对FGSM的改进。与FGSM只进行一次扰动不同,I-FGSM通过迭代的方式进行多次扰动来生成对抗样本。在每次迭代中,利用当前生成的对抗样本计算梯度,然后使用梯度信息来更新对抗样本。通过多次迭代,I-FGSM可以生成更强的对抗样本,提高攻击成功率。 PGD(Projected Gradient Descent)也是一种改进的对抗样本生成方法。PGD与I-FGSM类似,都是通过迭代方式生成对抗样本。不同之处在于,PGD在每次迭代中,会对生成的对抗样本进行投影,确保其在一定的距离范围内。这样做的目的是防止生成的对抗样本偏离原始输入太远,保持样本的可接受性。通过投影操作,PGD可以生成较为强鲁棒的对抗样本。 总结来说,FGSM是一种简单而快速的对抗样本生成方法,而I-FGSM和PGD则是对其的改进,通过迭代生成更强鲁棒的对抗样本。这些对抗样本生成方法的应用可以帮助我们了解和提升机器学习模型的安全性,从而更好地保护数据和系统的安全。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值