遥感地物分类多模态数据集

本文概述了多个光学、数字表面模型(DSM)、合成孔径雷达(SAR)和激光雷达(LiDAR)的数据集,包括Potsdam、Vaihingen、N3C-California等,这些数据集用于地理空间分析,涵盖了各类空间分辨率和类别标签。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总览

optical-dsm
数量平均尺寸空间分辨率模态数据集链接
386 000×6 0005cmRGB、DSM、IRRG、RGBIR、归一化DSMPotsdamlink
332 494×2 0469cmDSM、IRRGVaihingenlink
10800512×5121米RGB、点云、DSMN3C-Californialink
400+50256×25610米MS、SAR、DEMDKDFNlink
optical-sar
数量平均尺寸空间分辨率模态数据集链接
1005556×37045米RGBIR、SARWHU-OPT-SARlink
1mRGB、SARDDHRNetlink
900×9000.5米RGBIR、SARMSAWlink
400+50256×25610米MS、SAR、DEMDKDFNlink
1HS、SARHS-SAR Berlinlink
1HS、SAR、DSMHS-SAR-DSM Augsburglink
180748256×256MS10米,SAR20米MS、SARSEN12MSlink
optical-lidar
数量平均尺寸空间分辨率模态数据集链接
325 × 220HS、LiDARMUUFLGulfportlink
600×1661米HS、LiDARTrentolink
1349 × 1905HS、LiDARHouston2013link
hs-ms
数量平均尺寸空间分辨率模态数据集链接
1HS、MSHS-MS Houston2013link

收集不详尽,可能存在错误的地方,仅供参考。

optical-dsm

Potsdam数据集

2D Semantic Labeling Contest - Potsdam (isprs.org)

示例:

img

数量尺寸空间分辨率模态备注
386 000×6 000像素5cmRGB、DSM、IRRG、RGBIR、归一化DSM7_10号图像存在较多错误标注

类别:不透光表面、建筑物、低矮植被、树木、汽车和背景

Vaihingen数据集

2D Semantic Label. - Vaihingen (isprs.org)

示例:
在这里插入图片描述

数量平均尺寸空间分辨率模态备注
332 494×2 046像素9cmDSM、IRRG

类别:不透光表面、建筑物、低矮植被、树木、汽车和背景

N3C-California

IKDNet-pytorch

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

包含航空、点云和DSM图像,是一个专门为光学-点云多模态学习提出的数据集

image-20231121152004075

数量裁剪尺寸空间分辨率模态
10800512×512像素1米RGB、点云、DSM

类别:ground、tree、building、other

DKDFN

HunanMultimodalDataset

数量裁剪尺寸空间分辨率模态
400+50256×256像素10米MS、SAR、DEM

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所有数据都被上采样为10m

类别:building, road, farmland, water, greenery
image-20240307175902078

optical-sar

WHU-OPT-SAR数据集

WHU-OPT-SAR-dataset

在这里插入图片描述

数量平均尺寸空间分辨率模态备注
1005556×3704像素5米RGBIR、SAR该数据集由GF1和GF3采集自湖北省

类别:农田、城市、村庄、水域、森林、道路和其他

DDHRNet数据集

https://github.com/XD-MG/DDHRNet

A dual-stream high resolution network: Deep fusion of GF-2 and GF-3 data for land cover classification - ScienceDirect

在这里插入图片描述

数量裁剪尺寸空间分辨率模态备注
\\1m光学、SAR来自GF2、GF3,西安、东营、浦项

类别:建筑物、道路、农田、水域、植被

MSAW 数据集

Multi-Sensor All-Weather Mapping (spacenet.ai)

SpaceNet遥感数据集下载及数据集说明_数据集spacenet下载-CSDN博客

数量裁剪尺寸空间分辨率模态
900×900像素0.5米RGBIR、SAR

在这里插入图片描述

类别:建筑物和其他

HS-SAR Berlin数据集

https://github.com/danfenghong/ISPRS_S2FL

在这里插入图片描述

HS-SAR-DSM Augsburg 数据集

https://github.com/danfenghong/ISPRS_S2FL
在这里插入图片描述

SEN12MS数据集

mediaTUM - Media and Publication Server

数量裁剪尺寸空间分辨率模态备注
180748256MS10米,SAR20米MS、SAR涵盖范围很广,全球大部分地区四季的影像都有

论文里面展示的图标注挺粗糙的,不过似乎DFC2020提供有高分辨率的标注图。

在这里插入图片描述

optical-lidar

MUUFLGulfport

GatorSense/MUUFLGulfport: MUUFL Gulfport Hyperspectral and LIDAR Data: This data set includes HSI and LIDAR data, Scoring Code, Photographs of Scene, Description of Data (github.com)

Trento数据集

参考【Trento】遥感图像数据集提供下载_遥感图像数据集下载-CSDN博客

下载

Trento数据集取自意大利南部城市Trento的农村地区。Trento数据集的空间分辨率为1 m,场景包含六种不同的土地覆盖:苹果树、建筑、地面、木材、葡萄园和道路

数量裁剪尺寸空间分辨率模态备注
600×166像素1米HSI、LiDAR

other

HS-MS Houston2013数据集

https://github.com/danfenghong/ISPRS_S2FL

在这里插入图片描述

<think>好的,我需要帮助用户下载ISPRS数据集的最新版本。首先,我得确认用户提到的ISPRS数据集具体指哪些。根据用户提供的引用,他们提到了Potsdam、Vaihingen和Toronto数据集。这些数据集通常用于遥感图像的语义分割任务,属于ISPRS的2D语义标签数据。 用户希望从官方网站下载最新版本,但根据引用内容,官方网站可能需要注册或特殊访问权限。引用中提到的项目地址和百度网盘链接可能不是官方源,但用户可能需要替代下载方式。比如,引用[1]和[4]提供了百度网盘的链接,但提取码可能已过期或不正确。需要注意提醒用户检查链接的有效性。 另外,用户可能需要数据集的处理方法,引用[2]和[3]提到了数据集的介绍和处理源码。我应该建议用户访问官方网站获取详细信息,并考虑使用提供的源码处理数据。同时,要确保回答结构清晰,分步骤说明下载方法,并附上相关问题,符合用户的要求。 总结步骤:1. 访问ISPRS官方网站查找数据集;2. 使用提供的网盘链接(注意可能的风险);3. 数据集处理和验证。需要引用相关的引用内容,如引用[1]、[4]的下载链接,引用[3]的数据介绍,引用[2]的处理方法。</think>### 如何下载ISPRS数据集最新版本? #### 1. 访问ISPRS官方网站 ISPRS官方提供了部分数据集的下载入口,但需注意: - 部分数据集需要注册并提交申请,审核通过后才能下载(例如Potsdam和Vaihingen数据集)。 - 官方网站可能未直接提供最新版本的下载链接,需联系组织或关注相关学术平台更新[^3]。 #### 2. 通过第三方资源下载 若官方渠道访问受限,可通过以下途径获取: - **百度网盘链接**(来自社区分享): - Potsdam数据集:链接 [提取码: lala][^2] - Vaihingen数据集:链接 [提取码: lala] - Toronto数据集:链接 [提取码: lala] - 另一个Potsdam/Vaihingen备用链接:https://pan.baidu.com/s/1KvETdqibw00yeCPSwj_B4w [提取码: xxyy][^4] - **注意事项**:第三方链接可能存在失效风险,建议下载后校验文件完整性。 #### 3. 数据集处理与验证 下载后可使用开源工具处理数据: - 源码仓库:https://gitcode.com/Resource-Bundle-Collection/e095a[^1] - 处理内容包括数据切片、标签对齐、格式转换等。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值