总览
optical-dsm
数量 | 平均尺寸 | 空间分辨率 | 模态 | 数据集 | 链接 |
---|---|---|---|---|---|
38 | 6 000×6 000 | 5cm | RGB、DSM、IRRG、RGBIR、归一化DSM | Potsdam | link |
33 | 2 494×2 046 | 9cm | DSM、IRRG | Vaihingen | link |
10800 | 512×512 | 1米 | RGB、点云、DSM | N3C-California | link |
400+50 | 256×256 | 10米 | MS、SAR、DEM | DKDFN | link |
optical-sar
数量 | 平均尺寸 | 空间分辨率 | 模态 | 数据集 | 链接 |
---|---|---|---|---|---|
100 | 5556×3704 | 5米 | RGBIR、SAR | WHU-OPT-SAR | link |
1m | RGB、SAR | DDHRNet | link | ||
900×900 | 0.5米 | RGBIR、SAR | MSAW | link | |
400+50 | 256×256 | 10米 | MS、SAR、DEM | DKDFN | link |
1 | HS、SAR | HS-SAR Berlin | link | ||
1 | HS、SAR、DSM | HS-SAR-DSM Augsburg | link | ||
180748 | 256×256 | MS10米,SAR20米 | MS、SAR | SEN12MS | link |
optical-lidar
数量 | 平均尺寸 | 空间分辨率 | 模态 | 数据集 | 链接 |
---|---|---|---|---|---|
325 × 220 | HS、LiDAR | MUUFLGulfport | link | ||
600×166 | 1米 | HS、LiDAR | Trento | link | |
1 | 349 × 1905 | HS、LiDAR | Houston2013 | link |
hs-ms
数量 | 平均尺寸 | 空间分辨率 | 模态 | 数据集 | 链接 |
---|---|---|---|---|---|
1 | HS、MS | HS-MS Houston2013 | link |
收集不详尽,可能存在错误的地方,仅供参考。
optical-dsm
Potsdam数据集
2D Semantic Labeling Contest - Potsdam (isprs.org)
示例:
数量 | 尺寸 | 空间分辨率 | 模态 | 备注 |
---|---|---|---|---|
38 | 6 000×6 000像素 | 5cm | RGB、DSM、IRRG、RGBIR、归一化DSM | 7_10号图像存在较多错误标注 |
类别:不透光表面、建筑物、低矮植被、树木、汽车和背景
Vaihingen数据集
2D Semantic Label. - Vaihingen (isprs.org)
示例:
数量 | 平均尺寸 | 空间分辨率 | 模态 | 备注 |
---|---|---|---|---|
33 | 2 494×2 046像素 | 9cm | DSM、IRRG |
类别:不透光表面、建筑物、低矮植被、树木、汽车和背景
N3C-California
包含航空、点云和DSM图像,是一个专门为光学-点云多模态学习提出的数据集
数量 | 裁剪尺寸 | 空间分辨率 | 模态 |
---|---|---|---|
10800 | 512×512像素 | 1米 | RGB、点云、DSM |
类别:ground、tree、building、other
DKDFN
数量 | 裁剪尺寸 | 空间分辨率 | 模态 |
---|---|---|---|
400+50 | 256×256像素 | 10米 | MS、SAR、DEM |
所有数据都被上采样为10m
类别:building, road, farmland, water, greenery
optical-sar
WHU-OPT-SAR数据集
数量 | 平均尺寸 | 空间分辨率 | 模态 | 备注 |
---|---|---|---|---|
100 | 5556×3704像素 | 5米 | RGBIR、SAR | 该数据集由GF1和GF3采集自湖北省 |
类别:农田、城市、村庄、水域、森林、道路和其他
DDHRNet数据集
https://github.com/XD-MG/DDHRNet
数量 | 裁剪尺寸 | 空间分辨率 | 模态 | 备注 |
---|---|---|---|---|
\ | \ | 1m | 光学、SAR | 来自GF2、GF3,西安、东营、浦项 |
类别:建筑物、道路、农田、水域、植被
MSAW 数据集
Multi-Sensor All-Weather Mapping (spacenet.ai)
SpaceNet遥感数据集下载及数据集说明_数据集spacenet下载-CSDN博客
数量 | 裁剪尺寸 | 空间分辨率 | 模态 |
---|---|---|---|
900×900像素 | 0.5米 | RGBIR、SAR |
类别:建筑物和其他
HS-SAR Berlin数据集
https://github.com/danfenghong/ISPRS_S2FL
HS-SAR-DSM Augsburg 数据集
https://github.com/danfenghong/ISPRS_S2FL
SEN12MS数据集
mediaTUM - Media and Publication Server
数量 | 裁剪尺寸 | 空间分辨率 | 模态 | 备注 |
---|---|---|---|---|
180748 | 256 | MS10米,SAR20米 | MS、SAR | 涵盖范围很广,全球大部分地区四季的影像都有 |
论文里面展示的图标注挺粗糙的,不过似乎DFC2020提供有高分辨率的标注图。
optical-lidar
MUUFLGulfport
Trento数据集
参考【Trento】遥感图像数据集提供下载_遥感图像数据集下载-CSDN博客
Trento数据集取自意大利南部城市Trento的农村地区。Trento数据集的空间分辨率为1 m,场景包含六种不同的土地覆盖:苹果树、建筑、地面、木材、葡萄园和道路
数量 | 裁剪尺寸 | 空间分辨率 | 模态 | 备注 |
---|---|---|---|---|
600×166像素 | 1米 | HSI、LiDAR |
other
HS-MS Houston2013数据集
https://github.com/danfenghong/ISPRS_S2FL