C中使用 rand() 函数生成 伪·随机数,原理是利用初等数论中的同余定理来实现的. 产生整数rand的原理是: y=ax+b(mod n)其中,n一般是一个很大的素数,几万. a也是大素数.而且a,b,n都是常数。
具体步骤为:参考自https://www.cxyzjd.com/article/w_y_x_y/80199694
①在rand函数的内部,是通过一个公式计算出一个值作为随机值,下次再调用rand的时候,再把这个随机值作为参数传给这个公式计算出一个新的随机值,周而复始。
②在C库中,是通过一个静态全局变量来作为“种子”,而这个“种子”的值是通过srand函数改变的,如果不写srand函数,这个“种子”值默认赋值为1。这就解释了“为何不写srand函数,rand函数就会生成伪随机数”,因为程序只要重新开始运行,“种子”值就会被默认赋值为1,那么通过公式算出来的序列肯定就一直相同了。
示例:通常我们使用时间作为随机数种子。
#include <iostream>
#include <cmath>
void fun()
{
srand((unsigned int)time(nullptr)); // 使用秒作为随机种子
std::cout << "time:" << (unsigned int)time(nullptr) << std::endl;
std::cout << "random:" << rand() << std::endl;
}
int main()
{
int i = 10;
while (i--)
{
fun();
}
/* 输出
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
time:1630296077
random:11308
*/
return 0;
}
可以看到,使用时间::秒作为随机种子,那么在一秒钟之内获取的随机种子相同,则获取的随机数相同。
为了解决一秒内获取的随机数相同的问题,我们可以使用精度更高的时间,毫秒或微秒作为种子。但这样依然会存在上述问题。究其原因该函数只能生成伪·随机数。
在C11中 std::random_device 可用于生成随机数。
定义在 <random> 头文件中。
示例:
#include <iostream>
#include <random>
void fun()
{
std::random_device rd;
std::cout << "random:" << rd() << std::endl;
}
int main()
{
int i = 10;
while (i--)
{
fun();
}
/* 输出
random:2848171590
random:2149412796
random:1399167999
random:447251527
random:3148048510
random:1413765525
random:1709601834
random:3324289168
random:3911469733
random:2827637096
*/
return 0;
}
除此之外,标准库头文件 <random> 还提供了诸如正态分布、泊松分布等方式产生随机数。
具体参考:https://www.apiref.com/cpp-zh/cpp/header/random.html