(脑肿瘤分割笔记:五十)基于片间上下文残差学习的三维医学图像分割

目录

Title:Inter-slice Context Residual Learning for 3D Medical Image Segmentation 

一:Introduction

二:方法

2.1解决思路

2.2主要方法

2.3网络结构​编辑

总结


Title:Inter-slice Context Residual Learning for 3D Medical Image Segmentation 

一:Introduction

深度卷积神经网络已经广泛应用于医学图像分割领域,但这些模型的精度需要进一步提高,主要是其对三维环境感知的能力有限。--问题动机

这篇文章提出了三维上下文残差网络,用于三维医学图像的分割,模型由编码器,分段解码器和上下文残差(剩余)解码器组成。作者设计了上下文残差模块,并在它的每个初度尺度上桥接两个解码器,每个上下文残差模块包含上下文残差映射和上下文注意映射。形式化的目标是明确的学习片间上下文信息,而片间上下文作为一种注意来提高精度。

近年来,为了增强深度卷积神经网络对医学图像分割的能力,人们做了很多的尝试,例如对编码器-解码器体系结构通过多种方式进行了改进,以保持底层的详细信息,并获得清晰的边界对象,利用空间金字塔池化的方法来挖掘多尺度信息,在分割模型中引入了Atrous卷积,有效的扩展了感受野,并且一些注意力学习机制被引入到分割模型中,使得它们能够更多的关注特定的位置或通道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值