(脑肿瘤分割笔记:五十九)基于双向全局到局部无监督自适应跨模态的脑肿瘤分割

目录

摘要

Introduction

无监督域适应方法

方法

3.1框架概述

3.2双向交叉模态图像合成

3.3注意双重注意的细分网络

3.4全局->局部的自适应模块

3.5损失函数

 总结


摘要

在不同的模态之间存在着域转移,当在一种模态上训练并在另一种模态中执行时,网络的性能会急剧的下降--遇到的问题

为了克服这一问题,无监督域自适应提供了有效的解决方案,来缓解标记源数据和未标记目标数据之间的域偏移。本文在无监督域自适应的方案下提出了一种新的双向全局到局部(BiGL)自适应框架。具体而言,提出了一种双向图像合成和分割模块,用于使用为两个域生成的中间数据分布来分割脑肿瘤,其中包括图像到图像转换器和共享加权分割网络。此外,还提出了全局到局部一致性学习模块,以集成的方式构建鲁棒的表示对齐。

Introduction

UDA无监督域自适应方法旨在提高从标记数据(即源域)学习和对不同的未标记数据(如目标域)进行域移位时的模型泛化能力。

我们提出了一个框架,当对另一序列的MR图像(即源域)进行训练时,可以在一个MR图像序列(即目标域)中准确描绘脑肿瘤,反之亦然。在训练阶段,该方法随机选择两幅未配对的图像(每个域一幅图像)作为输入。然后,图像被发送到由两个主要组件组成的框架。

首先,为了缩小两个领域之间的差距,引入了双向图像生成和分割模块。它首先为每个原始图像生成一个合成图像,然后使用编码器-解码器架构分割所有图像(即原始图像和合成图像)应用于网络的新型全局到本地适配器(GTA)进一步调整了图像的特征和输出。从全局角度来看,适配器通过假设一个对象共享同一标签,在输出空间中对齐一个对象的真实图像和合成图像。它还通过常用的特征对齐来对齐不同主题的真实图像和合成图像。

无监督域适应方法

无监督领域自适应方法大致可分为两类,即一步UDA方法和多步领域自适应方法。

一步UDA方法通常通过最小化两个域的距离来简单地对齐它们的特征分布,该方法对原始域数据进行对齐,但网络很难最小化巨大的域差异。

相比之下,多步UDA方法通常在源域和目标域之间引入中间域,以获得更平滑的域对齐,在现有的方法中,这些中间域通常由生成性对抗学习方法生成。

方法

3.1框架概述

构建T1(作为源域)和T2(作为目标域),所拟定的架构如下图所示:

所提出的框架使用两个未配对的图像作为输入。每个图像来自一个域。然后这个网络框架由三个主要部分组成:1)首先使用双向图像到图像转换器从两个输入图像生成两个合成图像2)在这个转换器之后执行4个共享加权分割网络进行分割(分割的对象包括所有输入图像和合成图像)3)在分割网络中插入全局到本地的适配器,从而减少域偏移

3.2双向交叉模态图像合成

 这一模块的主要目的在于减少源域(T1)和目标域(T2)之间的域偏移很大,可以通过图像转换器来解决这一问题。具体来说给定未成对输入x_{s}\epsilon S,x_{t}\epsilon T分别来自源域和目标域,两个合成图像x_{s\rightarrow t },x_{t\rightarrow s },是使用生成对抗性网络生成的。具体来说。来自于Xs的图像生成器尝试通过这种方法生成类似于Xt的图像。

显然这种合成的图像传递了新模态的风格信息和旧模态的纹理信息,他们可以被视为从源域转移到目标域的中间样本。此外除了双向图像合成方案外,本文的方法还建立了一个双向自适应方案。然后将四副图像(两幅真实图像和两幅合成图像)送入一个基于注意的编解码网络进行分割。

3.3注意双重注意的细分网络

UNet的缺点之一是其无法用于捕获高级语义线索的区分特征,为了抑制无关区域,同时突出医学分割任务中的有用特征,卷积神经网络当中广泛的使用了注意力机制(包括SE模块)来增强这种能力。

而在本文中为UNet配备了双重注意力机制,这个机制不仅对高级特征应用空间注意,还应用通道注意力,这种双重注意块插入UNet的编码器和解码路径之间。空间维度为H*W*C的通道特征。位置型注意力机制学习一个H*W*H*W维度的掩码,以揭示每个特征图中面向目标的特征关系。同样C*C维度的通道注意模块揭示了特征图之间的显著性,给定ξ作为注意块的输入,每个注意屏蔽特征ξA的输出可以通过以下式子生成

ξB表示注意块之前的特征,α是可学习的权重。双注意模块的输出是两个注意屏蔽特征的聚合。

3.4全局->局部的自适应模块

这个模块是一组全局到局部对齐约束来对齐图像特征。这些约束包括输出空间,特征级别和注意级别一致性学习。这个学习应用于两种注意掩码(即通道注意掩码和位置注意掩码)所学习的掩码表示为AAtt.,并且将特征和注意掩码的对齐进行了对抗性学习。

与纯图像到图像的翻译任务不同,跨域分割任务要求真实图像和伪图像保持一致的语义信息。这限制了它生成相同的分割结果。因此,对于xs和xs→t、 我们首先计算损失Lsseg和LSyn。使用交叉熵损失和类平衡权为的广义骰子损失的sseg。两种损失函数定义如下:

然后Xs和xs→t是通过他们相同的真实标签来实现的。而Xt和Xt->s的一致性是通过输出一致性约束来实现的,他们在训练过程中没有真实标签,这种损失可以通过以下式子定义

同时注意力掩码的未标记图像被迫更靠近标记图像。我们使用对抗性学习来实现这一领域的对齐。分割网络被视为生成器,用于为某个域中不同图像生成分割掩码,鉴别器D尝试区分不同输入图像的注意掩码。因此一致性损失可以定义为:

3.5损失函数

本文基于无监督域自适应策略将肿瘤分割,一致性学习和对抗性学习整合到一个统一的框架当中,通过先前定义的损失函数来进行加权求和来获得总损失。

 总结

本文的提出了一种用于跨模态大脑的无监督注意域自适应的方法,本文的方法结合了双向图像到图像的传输和从全局到局部的表示对齐。可以在较大的域间隙情况下获得更好的模型泛化。具体来说,我们的方法利用两种模式的合成图像来生成源域和目标域之间的中间数据分布。此外,我们提出了一种注意力适应方法,以实现有效的适应。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值