一 简介
1 应用场景
房价预测、销售额度预测、贷款额度预测
2 什么是线性回归
2.1 定义与公式
线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归

特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型。
2.2 特征与目标的关系分析
线性回归当中主要有两种模型,**一种是线性关系,另一种是非线性关系。**在这里只能画一个平面更好去理解,所以都用单个特征或两个特征举例子。
线性关系
- 单变量线性关系:

- 多变量线性关系

单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系
更高维度的不用自己去想,记住这种关系即可
- 非线性关系

如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32
二 API初步使用
sklearn.linear_model.LinearRegression()
LinearRegression.coef_:回归系数,查看各项对应的系数值
需求:已知学生平时成绩、期末成绩、最终成绩,计算出平时成绩和期末成绩的权重值
# 导入模块
from sklearn.linear_model import LinearRegression
# 构造数据集
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4

本文介绍了线性回归的基础知识,包括应用场景、定义与公式、特征与目标的关系。接着深入探讨了线性回归的数学背景,如求导、损失函数和优化算法,特别是正规方程和梯度下降法的详细解释。文章还对比了全梯度下降、随机梯度下降、小批量梯度下降和随机平均梯度下降等优化算法的优劣。
最低0.47元/天 解锁文章
350

被折叠的 条评论
为什么被折叠?



