机器学习【线性回归算法1】

本文介绍了线性回归的基础知识,包括应用场景、定义与公式、特征与目标的关系。接着深入探讨了线性回归的数学背景,如求导、损失函数和优化算法,特别是正规方程和梯度下降法的详细解释。文章还对比了全梯度下降、随机梯度下降、小批量梯度下降和随机平均梯度下降等优化算法的优劣。
摘要由CSDN通过智能技术生成

一 简介

1 应用场景

房价预测、销售额度预测、贷款额度预测

2 什么是线性回归

2.1 定义与公式

线性回归(Linear regression)是利用回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归

在这里插入图片描述

特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型

2.2 特征与目标的关系分析

线性回归当中主要有两种模型,**一种是线性关系,另一种是非线性关系。**在这里只能画一个平面更好去理解,所以都用单个特征或两个特征举例子。

线性关系

  • 单变量线性关系:

在这里插入图片描述

  • 多变量线性关系
    在这里插入图片描述

单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系

更高维度的不用自己去想,记住这种关系即可

  • 非线性关系
    在这里插入图片描述

如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32

二 API初步使用

sklearn.linear_model.LinearRegression()
	LinearRegression.coef_:回归系数,查看各项对应的系数值

需求:已知学生平时成绩、期末成绩、最终成绩,计算出平时成绩和期末成绩的权重值

# 导入模块
from sklearn.linear_model import LinearRegression
# 构造数据集
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneTenTwo76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值