利用Python分析《庆余年》人物图谱和微博传播路径

利用Python分析《庆余年》人物图谱和微博传播路径

庆余年电视剧终于在前两天上了,这两天赶紧爬取微博数据看一下它的表现。
微博传播路径

庆余年

《庆余年》是作家猫腻的小说。这部从2007年就开更的作品拥有固定的书迷群体,也在文学IP价值榜上有名。
《亲余年》书籍
期待已久的影视版的《庆余年》终于播出了,一直很担心它会走一遍《盗墓笔记》的老路。

在《庆余年》电视剧上线后,就第一时间去看了,真香。
在这里插入图片描述

庆余年微博传播分析

《庆余年》在微博上一直霸占热搜榜,去微博看一下大家都在讨论啥:
微博评论
一条条看显然不符合数据分析师身份。

于是爬取了微博超话页面,然后找到相关人员,分别去爬取相关人员的微博评论,看看大家都在讨论啥。

import re
import time
import copy
import pickle
import requests
import argparse

'''微博爬虫类'''
class weibo():
	def __init__(self, **kwargs):
		self.login_headers = {
								'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36',
								'Accept': '*/*',
								'Accept-Encoding': 'gzip, deflate, br',
								'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',
								'Connection': 'keep-alive',
								'Origin': 'https://passport.weibo.cn',
								'Referer': 'https://passport.weibo.cn/signin/login?entry=mweibo&r=https%3A%2F%2Fweibo.cn%2F&backTitle=%CE%A2%B2%A9&vt='
							}
		self.login_url = 'https://passport.weibo.cn/sso/login'
		self.home_url = 'https://weibo.com/'
		self.headers = {
						'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36',
						}
		self.session = requests.Session()
		self.time_interval = 1.5
	'''获取评论数据'''
	def getComments(self, url, url_type='pc', max_page='all', savename=None, is_print=True, **kwargs):
		# 判断max_page参数是否正确
		if not isinstance(max_page, int):
			if max_page != 'all':
				raise ValueError('[max_page] error, weibo.getComments -> [max_page] should be <number(int) larger than 0> or <all>')
		else:
			if max_page < 1:
				raise ValueError('[max_page] error, weibo.getComments -> [max_page] should be <number(int) larger than 0> or <all>')
		# 判断链接类型
		if url_type == 'phone':
			mid = url.split('/')[-1]
		elif url_type == 'pc':
			mid = self.__getMid(url)
		else:
			raise ValueError('[url_type] error, weibo.getComments -> [url_type] should be <pc> or <phone>')
		# 数据爬取
		headers = copy.deepcopy(self.headers)
		headers['Accept'] = 'application/json, text/plain, */*'
		headers['MWeibo-Pwa'] = '1'
		headers['Referer'] = 'https://m.weibo.cn/detail/%s' % mid
		headers['X-Requested-With'] = 'XMLHttpRequest'
		url = 'https://m.weibo.cn/comments/hotflow?id={}&mid={}&max_id_type=0'.format(mid, mid)
		num_page = 0
		comments_data = {}
		while True:
			num_page += 1
			print('[INFO]: Start to get the comment data of page%d...' % num_page)
			if num_page > 1:
				url = 'https://m.weibo.cn/comments/hotflow?id={}&mid={}&max_id={}&max_id_type={}'.format(mid, mid, max_id, max_id_type)
			res = self.session.get(url, headers=headers)
			comments_data[num_page] = res.json()
			if is_print:
				print(res.json())
			try:
				max_id = res.json()['data']['max_id']
				max_id_type = res.json()['data']['max_id_type']
			except:
				break
			if isinstance(max_page, int):
				if num_page < max_page:
					time.sleep(self.time_interval)
				else:
					break
			else:
				if int(float(max_id)) != 0:
					time.sleep(self.time_interval)
				else:
					break
		if savename is None:
			savename = 'comments_%s.pkl' % str(int(time.time()))
		with open(savename, 'wb') as f:
			pickle.dump(comments_data, f)
		return True
	'''模拟登陆'''
	def login(self, username, password):
		data = {
				'username': username,
				'password': password,
				'savestate': '1',
				'r': 'https://weibo.cn/',
				'ec': '0',
				'pagerefer': 'https://weibo.cn/pub/',
				'entry': 'mweibo',
				'wentry': '',
				'loginfrom': '',
				'client_id': '',
				'code': '',
				'qq': '',
				'mainpageflag': '1',
				'hff': '',
				'hfp': ''
				}
		res = self.session.post(self.login_url, headers=self.login_headers, data=data)
		if res.json()['retcode'] == 20000000:
			self.session.headers.update(self.login_headers)
			print('[INFO]: Account -> %s, login successfully...' % username)
			return True
		else:
			raise RuntimeError('[INFO]: Account -> %s, fail to login, username or password error...' % username)
	'''获取PC端某条微博的mid'''
	def __getMid(self, pc_url):
		headers = copy.deepcopy(self.headers)
		headers['Cookie'] = 'SUB=_2AkMrLtDRf8NxqwJRmfgQzWzkZI11ygzEieKdciEKJRMxHRl-yj83qhAHtRB6AK7-PqkF1Dj9vq59_dD6uw4ZKE_AJB3c;'
		res = requests.get(pc_url, headers=headers)
		mid = re.findall(r'mblog&act=(\d+)\\', res.text)[0]
		return mid


if __name__ == '__main__':
	import argparse
	parser = argparse.ArgumentParser(description="weibo comments spider")
	parser.add_argument('-u', dest='username', help='weibo username', default='')
	parser.add_argument('-p', dest='password', help='weibo password', default='')
	parser.add_argument('-m', dest='max_page', help='max number of comment pages to crawl(number<int> larger than 0 or all)', default=100)
	parser.add_argument('-l', dest='link', help='weibo comment link', default='')
	parser.add_argument('-t', dest='url_type', help='weibo comment link type(pc or phone)', default='pc')
	args = parser.parse_args()
	wb = weibo()
	username = args.username
	password = args.password
	try:
		max_page = int(float(args.max_page))
	except:
		pass
	**加粗样式**url = args.link
	url_type = args.url_type
	if not username or not password or not max_page or not url or not url_type:
		raise ValueError('argument error')
	wb.login(username, password)
	wb.getComments(url, url_type, max_page)

爬取到微博评论后,老规矩,词云展示一下,不同主角的评论内容差别还是挺大的

微博评论词云分析

不同主演的评论风格差异较大,也与微博内容息息相关。
张若昀:
在这里插入图片描述
李沁:
在这里插入图片描述
肖战:
emmm…算了吧
在这里插入图片描述

从目前大家的评论来看,情绪比较正向,评价较高,相信《庆余年》会越来越火的。

这部剧在微博热度这么高,都是谁在传播呢?

于是我进一步点击用户头像获取转发用户的公开信息。

看了一下几位主演的相关微博,都是几十万的评论和转发,尤其是肖战有百万级的转发,尝试爬了一下肖战的微博,执行了6个小时只爬了十分之一。

最终还是败给了各位小飞侠,之后有结果再同步给大家。
在这里插入图片描述

于是我只能挑软柿子捏,换成官微的微博。
在这里插入图片描述
这条微博发布时间是26号,经过一段时间已经有比较好的传播,其中有几个关键节点进一步引爆话题。
在这里插入图片描述
经过几个关键节点后,进一步获得传播,这几个关键节点分别是:

肖战的超话:https://weibo.com/1081273845/Ii1ztr1BH
王小亚的微博:https://weibo.com/6475144268/Ii1rDEN6q

继续看一下转发该微博的用户分析:

进一步了解转发微博的受众,掌握传播范围和深度。
传播用户分析
整体看下来,庆余年官微的这条微博90%都是普通用户的转发,这部剧转发层级达到5层,传播范围广,在微博上的讨论女性居多(占比89%),大部分集中在一二线城市。

原著人物关系图谱

如果只看微博,不分析原著,那就不是一个合格的书粉。

于是我去下载了原著画一下人物关系图谱。
《庆余年》人物
先给大家看一下原著的人物关系图谱:
在这里插入图片描述
emmm…确实挺丑的,大家可以去Gephi上调整。

首先我需要从原著里洗出人物名,尝试用jieba分词库来清洗:

import jieba

test= 'temp.txt' #设置要分析的文本路径
text = open(test, 'r', 'utf-8')
seg_list = jieba.cut(text, cut_all=True, HMM=False)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

生成一个适合你的列表

发现并不能很好的切分出所有人名,最简单的方法是直接准备好人物名称和他们的别名,这样就能准确定位到人物关系。

存储好人物表,以及他们对应的别名(建立成字典)

def synonymous_names(synonymous_dict_path):
    with codecs.open(synonymous_dict_path, 'r', 'utf-8') as f:
        lines = f.read().split('\n')
    for l in lines:
        synonymous_dict[l.split(' ')[0]] = l.split(' ')[1]
    return synonymous_dict

接下来,清理文本数据:

def clean_text(text):
    new_text = []
    text_comment = []
    with open(text, encoding='gb18030') as f:
        para = f.read().split('\r\n')
        para = para[0].split('\u3000')
    for i in range(len(para)):
        if para[i] != '':
            new_text.append(para[i])
    for i in range(len(new_text)):
        new_text[i] = new_text[i].replace('\n', '')
        new_text[i] = new_text[i].replace(' ', '')
        text_comment.append(new_text[i])
    return text_comment

我们需要进一步统计人物出现次数,以及不同人物间的共现次数:

text_node = []
for name, times in person_counter.items():
    text_node.append([])
    text_node[-1].append(name)
    text_node[-1].append(name)
    text_node[-1].append(str(times))
node_data = DataFrame(text_node, columns=['Id', 'Label', 'Weight'])
node_data.to_csv('node.csv', encoding='gbk')

结果样例如下:
部分人物出场次数统计
不愧是主角,范闲出现的次数超过了其他人物出现次数的总和,基本每个人都与主角直接或间接地产生影响。
人物出现次数分布
同理可以得到不同人物的边,具体代码参考源文件。

接下来需要做的就是利用Gephi绘制人物关系图谱:
在这里插入图片描述
运行结果:
在这里插入图片描述
参考文献:Ren, Donghao, Xin Zhang, Zhenhuang Wang, Jing Li, and Xiaoru Yuan. “WeiboEvents: A Crowd Sourcing Weibo Visual Analytic System.” In Pacific Visualization Symposium (PacificVis) Notes, 2014 IEEE, pp. 330-334. IEEE, 2014.

有任何问题,欢迎私信。

发布了14 篇原创文章 · 获赞 415 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览