【数学建模】7 线性规划及例题详解

1 引例

引例(食谱问题)设有n种食物,各含m种营养素,第j种食物中第i种营养素的含量为an,n种食物价格分别为c1,c2,…,cn。请确定食谱中n种食物的数量x1,x2,…xn。要求在食谱中m种营养素的含量分别不低于b,b2,…,bn的情况下,使得总的费用最低。

在这里插入图片描述

定义 :将目标函数和约束条件都是线性函数的数学规划问题称为线性规划问题(LP 问题)。
在这里插入图片描述

MATLAB软件求解函数:linprog
模型:min Z = cTx
s.t. Ax<=b
Aeq.x =beq
VLB<=x<=VUB
命令:[x,favl] = linprog(c,A,b,Aeq,beq,VLB,VUB,x0)
在这里插入图片描述

注意:若没有等式约束:Aeq.x =beq,则令Aeq =[],beq=[].

2 自来水输水问题

题目:
在这里插入图片描述

解:
(1)分析问题
总供水量:160小于需求量120+180 = 300 收入:900元/103t ,总收入900160 = 144000(元)
支出 引水管理费 其他费用450元/103 t ;其他支出450
160 =72000(元)
确定送水方案使得水厂利润最大,引水管理费最小。
(2)模型建立
确定3个水库向4个小区的供水量
决策变量 水库i向j小区的日供水量为xij(x34 =0)
目标函数

Min Z = 160x 11 + 130x 12 + 220x 13 +170x 14 + 140x 21 + 130x 22 + 190x 23 + 150x 24 + 190x 31 + 200x 32 + 230x 33
供应限制
x 11 + x 12 + x 13 + x 14 = 50
x 21 + x 22 + x 23 + x 24 = 60
x 31 + x 32 + x 33 = 50

需求限制

30<= x 11 +x 21 +x 31 <=80
70<=x 12 + x 22 + x 32 <=140
10<=x 13 + x 23 + x 32 <=140
10<=x 14 + x 24 <=50

(3)软件计算结果分析
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值