1. Location-Scale t简介
1.1.分布形式
Location-Scale t 分布的概率密度函数
f
(
x
)
f(x)
f(x)可写作如下形式,
f
(
x
)
=
Γ
(
ν
+
1
2
)
σ
ν
π
Γ
(
ν
2
)
[
ν
+
(
x
−
μ
σ
)
2
ν
]
−
ν
+
1
2
f(x)= \frac{Γ(\frac{ν+1}2)}{σ\sqrt{νπ}Γ(\frac{ν}2)}\left[ \frac{ν+(\frac{x-μ}σ)^2}ν \right]^{-\frac{ν+1} 2}
f(x)=σνπΓ(2ν)Γ(2ν+1)[νν+(σx−μ)2]−2ν+1
其中,
Γ
(
•
)
Γ( • )
Γ(•)是伽马函数,
µ
µ
µ 是位置参数,
σ
σ
σ 是尺度参数,
ν
ν
ν 是形状参数。
1.2.分布性质
统计指标 | 公式 |
---|---|
均值 | m e a n = μ mean=μ mean=μ |
方差 | v a r = σ 2 ν ν − 2 var=σ^2 \frac ν{ ν-2} var=σ2ν−2ν |
2. t Location-Scale Distribution与标准学生t分布区别
标准学生t分布一般与标准正态分布放在一起说,他们的均值都为0。也就是标准学生t分布是关于
x
=
0
x=0
x=0(y轴)对称的,而且其只有自由度一个参数。t Location-Scale Distribution引入了额外的参数来控制分布的位置、尺度和形状。两种
t
t
t分布的转换形式如下,如果对于符合 t Location-Scale Distribution的一组数据
x
x
x进行如下变换,
y
=
x
−
μ
σ
y=\frac{x-μ}σ
y=σx−μ
则此时
y
y
y为自由度为
ν
ν
ν的学生
t
t
t分布。
3.参考文献
【1】随机生成location-scale-t-distribution的PDF、CDF等.R
【2】matlab拟合pd=fitdist(样本,tLocationScale)
【3】Location-Scale族函数