AI学习记录 - transformer的Embedding层

创作不易,免费的赞

前面有介绍了GPT2如何进行token化的过程,现在讲下transformer的Embedding层

Embedding层就是一个巨大的矩阵,边长分别是词汇表长度和词向量维度,矩阵里面的每一个数字都是一个随机初始化的,或者是其他地方经过训练之后拿过来的。在transformer训练过程中,这些每个token的维度浮点数会发生改变。
在这里插入图片描述

在训练的过程中,假设我们窗口为50个token,意思就是我们生成下一个词的时候,只使用前面50个词去预测下个词,就算前面继续有词,我也不会应用,那么就变成下图。但是当本来就没有50个词的时候怎么办,那么需要填充字符,可以是任意字符,反正你就当成是个填充码,这里使用的是PAD,PAD在token当中也是存在的,你甚至自己定义一个token,如<<notoken!>>都可以。

为什么需要填充满50个字符,不满就不满,感觉也什么问题啊?

这是因为如果限定成50个,那么在使用显卡的训练的时候速度就可以快很多,没有的话也可以。

在这里插入图片描述

上图这个矩阵就是输入到下一个层级的矩阵,下一层就是添加位置编码,本系列中也已经有章节介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值