一文弄懂如何用FFT来计算IFFT

FFT(Fast Fourier Transform),即快速傅里叶变换。IFFT(Inverse Fast Fourier Transform),即逆傅里叶变换。本文想要跟大家一起探讨的一个无聊的问题是,假如你有一个FFT函数,如何利用这个FFT函数来做IFFT计算,而不是直接使用IFFT函数。

首先来看FFT是怎么计算的:

X(k)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2pi}{N}kn}

其中,k为频域信号X的索引,n为时域信号x的索引,N为FFT点数,e^{-j\frac{2pi}{N}kn}又称为旋转因子。

然后来看一下IFFT是怎么计算的:

X(k)=\sum_{n=0}^{N-1}x(n)e^{j\frac{2pi}{N}kn}

其中,k为时域信号X的索引,n为频域信号x的索引,可以看到,其实IFFT和FFT的差异其实只是旋转因子不一样,FFT的复指数的指数是负的,而IFFT的复指数的指数是正的。这个差异可以通过以下的变换对消:

IFFT(x[n])=\frac{1}{N}*conj(FFT(conj(x[n])))

conj()表示取共轭。下面直接上代码:

clc;
clear;

% Define the number of samples (N)
N = 8;

% Example input signal (time-domain signal)
x = [1, 2, 3, 4, 5, 6, 7, 8];

% Step 1: Perform the FFT of the input signal
X = fft(x);

% Step 2: Perform the FFT of the conjugate of the FFT result (to simulate IFFT)
X_conj = fft(conj(X));  % Apply FFT to the conjugate of the FFT result

% Step 3: Take the conjugate of the FFT result
ifft_result = conj(X_conj);

% Step 4: Normalize the result by dividing by N (to scale the IFFT output)
ifft_result = ifft_result / N;

% Display the original signal and IFFT result
disp('Original Signal:');
disp(x);

disp('IFFT Result (computed using FFT twice and other operations):');
disp(ifft_result);

代码的运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值