快速傅立叶变换(FFT)和逆快速傅立叶变换 (IFFT)

  • 逆快速傅立叶变换(Inverse Fast Fourier Transform, IFFT)是一种用于恢复信号或数据到其原始形式的技术,它是快速傅立叶变换(Fast Fourier Transform, FFT)的逆运算。
  • FFT 是一种高效的离散傅立叶变换(Discrete Fourier Transform, DFT)算法,用于将时域信号转换到频域表示,而 IFFT 则是将频域表示的数据转换回时域信号。

好的,让我们通过一个具体的例子来说明快速傅立叶变换 (FFT) 和逆快速傅立叶变换 (IFFT) 的工作原理。我们将使用一个简单的三维张量 A A A 来演示这个过程。

张量 A

假设我们有一个 3 × 3 × 4 3 \times 3 \times 4 3×3×4 的三维张量 A A A,每个元素都用 a i j k a_{ijk} aijk 表示,其中 i i i j j j 分别是第一个和第二个维度的索引, k k k 是第三个维度的索引。我们可以写出张量 A A A 的形式如下:

A = [ [ a 111 a 112 a 113 a 121 a 122 a 123 a 131 a 132 a 133 ] , [ a 112 a 112 a 113 a 122 a 122 a 123 a 132 a 132 a 133 ] , [ a 113 a 112 a 113 a 123 a 122 a 123 a 133 a 132 a 133 ] , [ a 114 a 112 a 113 a 124 a 122 a 123 a 134 a 132 a 133 ] ] A = \begin{bmatrix} \begin{bmatrix} a_{111} & a_{112} & a_{113} \\ a_{121} & a_{122} & a_{123} \\ a_{131} & a_{132} & a_{133} \end{bmatrix}, \begin{bmatrix} a_{112} & a_{112} & a_{113} \\ a_{122} & a_{122} & a_{123} \\ a_{132} & a_{132} & a_{133} \end{bmatrix}, \begin{bmatrix} a_{113} & a_{112} & a_{113} \\ a_{123} & a_{122} & a_{123} \\ a_{133} & a_{132} & a_{133} \end{bmatrix}, \begin{bmatrix} a_{114} & a_{112} & a_{113} \\ a_{124} & a_{122} & a_{123} \\ a_{134} & a_{132} & a_{133} \end{bmatrix} \end{bmatrix} A= a111a121a131a112a122a132a113a123a133 , a112a122a132a112a122a132a113a123a133 , a113a123a133a112a122a132a113a123a133 , a114a124a134a112a122a132a113a123a133

步骤 1: 快速傅立叶变换 (FFT)

对每个前向切片应用 FFT

对于张量 A A A 的每一个前向切片 A ( k ) A(k) A(k) k = 1 , 2 , 3 , 4 k = 1, 2, 3, 4 k=1,2,3,4),我们将应用快速傅立叶变换 (FFT) 沿着第三个维度。这将把每个 3 × 3 3 \times 3 3×3 的前向切片转换到频域。

假设我们用 A ^ ( k ) \hat{A}(k) A^(k)表示经过 FFT 处理后的前向切片。对于每个前向切片 A ( k ) A(k) A(k),我们可以写出 FFT 的形式为:
A ^ ( k ) = FFT ( A ( k ) , [ ] , 3 ) \hat{A}(k) = \text{FFT}(A(k), [], 3) A^(k)=FFT(A(k),[],3)

这里的 [] 表示默认沿所有维度进行 FFT,而 3 明确指定了沿着第三个维度进行 FFT。

示例 FFT

为了简化,我们假设 A ( k ) A(k) A(k) 中的元素都是实数。对于 k = 1 k = 1 k=1 的情况,假设 A ( 1 ) A(1) A(1) 的 FFT 结果为:
A ^ ( 1 ) = [ a ^ 111 a ^ 112 a ^ 113 a ^ 121 a ^ 122 a ^ 123 a ^ 131 a ^ 132 a ^ 133 ] \hat{A}(1) = \begin{bmatrix} \hat{a}_{111} & \hat{a}_{112} & \hat{a}_{113} \\ \hat{a}_{121} & \hat{a}_{122} & \hat{a}_{123} \\ \hat{a}_{131} & \hat{a}_{132} & \hat{a}_{133} \end{bmatrix} A^(1)= a^111a^121a^131a^112a^122a^132a^113a^123a^133

类似地,我们可以得到其他前向切片的 FFT 结果。这样我们就得到了频域中的张量 A ^ \hat{A} A^

步骤 2: 逆快速傅立叶变换 (IFFT)

对每个前向切片应用 IFFT

一旦我们完成了对每个前向切片的 FFT 处理,我们想要将这些前向切片转换回时域,也就是原始的空间表示。这一步通过应用逆快速傅立叶变换 (IFFT) 来实现。

假设我们已经完成了对张量 A A A 的前向切片的处理,并得到了处理后的前向切片 A ^ ( k ) \hat{A}(k) A^(k)。现在我们要将这些前向切片重新组合成张量 A ^ \hat{A} A^

A ^ = IFFT ( A ^ , [ ] , 3 ) \hat{A} = \text{IFFT}(\hat{A}, [], 3) A^=IFFT(A^,[],3)

这里的 A ^ \hat{A} A^ 是一个 3 × 3 × 4 3 \times 3 \times 4 3×3×4 的张量,其每个前向切片都已经过处理,并且已经被转换回时域。

示例 IFFT

假设我们已经完成了对张量 A A A 的前向切片的处理,并得到了处理后的前向切片 A ^ ( k ) \hat{A}(k) A^(k)。现在我们要将这些前向切片重新组合成张量 A ^ \hat{A} A^

对于 k = 1 k = 1 k=1 的情况,假设 A ^ ( 1 ) \hat{A}(1) A^(1) 的 IFFT 结果为:
A ~ ( 1 ) = [ a ~ 111 a ~ 112 a ~ 113 a ~ 121 a ~ 122 a ~ 123 a ~ 131 a ~ 132 a ~ 133 ] \tilde{A}(1) = \begin{bmatrix} \tilde{a}_{111} & \tilde{a}_{112} & \tilde{a}_{113} \\ \tilde{a}_{121} & \tilde{a}_{122} & \tilde{a}_{123} \\ \tilde{a}_{131} & \tilde{a}_{132} & \tilde{a}_{133} \end{bmatrix} A~(1)= a~111a~121a~131a~112a~122a~132a~113a~123a~133

通过这种方式,IFFT 在张量处理中被用来将经过处理的前向切片从频域转换回时域,从而恢复出处理后的张量。这种方法特别适用于多视图子空间聚类,因为它可以帮助我们更好地处理噪声和光照变化,同时保持数据的高阶相关性。

总结

在上述例子中,我们首先通过 FFT 将张量 A A A 的前向切片转换到了频域,然后对频域中的前向切片进行了处理(例如,软阈值操作),最后通过 IFFT 将这些处理后的前向切片转换回了时域

这样我们就得到了一个处理后的张量 A ^ \hat{A} A^,它保留了原始张量 A A A 的形状,但是其内部的数值已经被修改,以反映我们在频域中所做的操作。

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值